মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x^{2}-1+3x=-5.5
উভয় সাইডে 3x যোগ করুন৷
-x^{2}-1+3x+5.5=0
উভয় সাইডে 5.5 যোগ করুন৷
-x^{2}+4.5+3x=0
4.5 পেতে -1 এবং 5.5 যোগ করুন।
-x^{2}+3x+4.5=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4.5}}{2\left(-1\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -1, b এর জন্য 3 এবং c এর জন্য 4.5 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4.5}}{2\left(-1\right)}
3 এর বর্গ
x=\frac{-3±\sqrt{9+4\times 4.5}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-3±\sqrt{9+18}}{2\left(-1\right)}
4 কে 4.5 বার গুণ করুন।
x=\frac{-3±\sqrt{27}}{2\left(-1\right)}
18 এ 9 যোগ করুন।
x=\frac{-3±3\sqrt{3}}{2\left(-1\right)}
27 এর স্কোয়ার রুট নিন।
x=\frac{-3±3\sqrt{3}}{-2}
2 কে -1 বার গুণ করুন।
x=\frac{3\sqrt{3}-3}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-3±3\sqrt{3}}{-2} যখন ± হল যোগ৷ 3\sqrt{3} এ -3 যোগ করুন।
x=\frac{3-3\sqrt{3}}{2}
-3+3\sqrt{3} কে -2 দিয়ে ভাগ করুন।
x=\frac{-3\sqrt{3}-3}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-3±3\sqrt{3}}{-2} যখন ± হল বিয়োগ৷ -3 থেকে 3\sqrt{3} বাদ দিন।
x=\frac{3\sqrt{3}+3}{2}
-3-3\sqrt{3} কে -2 দিয়ে ভাগ করুন।
x=\frac{3-3\sqrt{3}}{2} x=\frac{3\sqrt{3}+3}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
-x^{2}-1+3x=-5.5
উভয় সাইডে 3x যোগ করুন৷
-x^{2}+3x=-5.5+1
উভয় সাইডে 1 যোগ করুন৷
-x^{2}+3x=-4.5
-4.5 পেতে -5.5 এবং 1 যোগ করুন।
\frac{-x^{2}+3x}{-1}=-\frac{4.5}{-1}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{3}{-1}x=-\frac{4.5}{-1}
-1 দিয়ে ভাগ করে -1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-3x=-\frac{4.5}{-1}
3 কে -1 দিয়ে ভাগ করুন।
x^{2}-3x=4.5
-4.5 কে -1 দিয়ে ভাগ করুন।
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4.5+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} পেতে x টার্মের গুণাঙ্ক -3-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{3}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-3x+\frac{9}{4}=4.5+\frac{9}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{3}{2} এর বর্গ করুন।
x^{2}-3x+\frac{9}{4}=\frac{27}{4}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{9}{4} এ 4.5 যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x-\frac{3}{2}\right)^{2}=\frac{27}{4}
x^{2}-3x+\frac{9}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{27}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{3}{2}=\frac{3\sqrt{3}}{2} x-\frac{3}{2}=-\frac{3\sqrt{3}}{2}
সিমপ্লিফাই।
x=\frac{3\sqrt{3}+3}{2} x=\frac{3-3\sqrt{3}}{2}
সমীকরণের উভয় দিকে \frac{3}{2} যোগ করুন।