মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2\left(-x^{2}+20x\right)
ফ্যাক্টর আউট 2।
x\left(-x+20\right)
বিবেচনা করুন -x^{2}+20x। ফ্যাক্টর আউট x।
2x\left(-x+20\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
-2x^{2}+40x=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-40±\sqrt{40^{2}}}{2\left(-2\right)}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-40±40}{2\left(-2\right)}
40^{2} এর স্কোয়ার রুট নিন।
x=\frac{-40±40}{-4}
2 কে -2 বার গুণ করুন।
x=\frac{0}{-4}
এখন সমীকরণটি সমাধান করুন x=\frac{-40±40}{-4} যখন ± হল যোগ৷ 40 এ -40 যোগ করুন।
x=0
0 কে -4 দিয়ে ভাগ করুন।
x=-\frac{80}{-4}
এখন সমীকরণটি সমাধান করুন x=\frac{-40±40}{-4} যখন ± হল বিয়োগ৷ -40 থেকে 40 বাদ দিন।
x=20
-80 কে -4 দিয়ে ভাগ করুন।
-2x^{2}+40x=-2x\left(x-20\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 0 ও x_{2} এর ক্ষেত্রে বিকল্প 20