মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=7 ab=-\left(-10\right)=10
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি -x^{2}+ax+bx-10 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,10 2,5
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 10 প্রদান করে।
1+10=11 2+5=7
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=5 b=2
সমাধানটি হল সেই জোড়া যা 7 যোগফল প্রদান করে।
\left(-x^{2}+5x\right)+\left(2x-10\right)
\left(-x^{2}+5x\right)+\left(2x-10\right) হিসেবে -x^{2}+7x-10 পুনরায় লিখুন৷
-x\left(x-5\right)+2\left(x-5\right)
প্রথম গোষ্ঠীতে -x এবং দ্বিতীয় গোষ্ঠীতে 2 ফ্যাক্টর আউট।
\left(x-5\right)\left(-x+2\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-5 ফ্যাক্টর আউট করুন।
x=5 x=2
সমীকরণের সমাধানগুলো খুঁজতে, x-5=0 এবং -x+2=0 সমাধান করুন।
-x^{2}+7x-10=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -1, b এর জন্য 7 এবং c এর জন্য -10 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
7 এর বর্গ
x=\frac{-7±\sqrt{49+4\left(-10\right)}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-7±\sqrt{49-40}}{2\left(-1\right)}
4 কে -10 বার গুণ করুন।
x=\frac{-7±\sqrt{9}}{2\left(-1\right)}
-40 এ 49 যোগ করুন।
x=\frac{-7±3}{2\left(-1\right)}
9 এর স্কোয়ার রুট নিন।
x=\frac{-7±3}{-2}
2 কে -1 বার গুণ করুন।
x=-\frac{4}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-7±3}{-2} যখন ± হল যোগ৷ 3 এ -7 যোগ করুন।
x=2
-4 কে -2 দিয়ে ভাগ করুন।
x=-\frac{10}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-7±3}{-2} যখন ± হল বিয়োগ৷ -7 থেকে 3 বাদ দিন।
x=5
-10 কে -2 দিয়ে ভাগ করুন।
x=2 x=5
সমীকরণটি এখন সমাধান করা হয়েছে।
-x^{2}+7x-10=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
-x^{2}+7x-10-\left(-10\right)=-\left(-10\right)
সমীকরণের উভয় দিকে 10 যোগ করুন।
-x^{2}+7x=-\left(-10\right)
-10 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
-x^{2}+7x=10
0 থেকে -10 বাদ দিন।
\frac{-x^{2}+7x}{-1}=\frac{10}{-1}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{7}{-1}x=\frac{10}{-1}
-1 দিয়ে ভাগ করে -1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-7x=\frac{10}{-1}
7 কে -1 দিয়ে ভাগ করুন।
x^{2}-7x=-10
10 কে -1 দিয়ে ভাগ করুন।
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} পেতে x টার্মের গুণাঙ্ক -7-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{7}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{7}{2} এর বর্গ করুন।
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
\frac{49}{4} এ -10 যোগ করুন।
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
x^{2}-7x+\frac{49}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
সিমপ্লিফাই।
x=5 x=2
সমীকরণের উভয় দিকে \frac{7}{2} যোগ করুন।