x এর জন্য সমাধান করুন
x=-\frac{1}{2}=-0.5
x=3
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
ভ্যারিয়েবল x -1,0 মানগুলোর যেকোনওটির সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে x\left(x+1\right) দিয়ে গুন করুন, x+1,x এর লঘিষ্ট সাধারণ গুণিতক।
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
x+1 কে 3 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-x\times 4-3x-3=-2x\left(x+1\right)
3x+3 এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
-x\times 4-3x-3=-2x^{2}-2x
-2x কে x+1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-x\times 4-3x-3+2x^{2}=-2x
উভয় সাইডে 2x^{2} যোগ করুন৷
-x\times 4-3x-3+2x^{2}+2x=0
উভয় সাইডে 2x যোগ করুন৷
-x\times 4-x-3+2x^{2}=0
-x পেতে -3x এবং 2x একত্রিত করুন।
-4x-x-3+2x^{2}=0
-4 পেতে -1 এবং 4 গুণ করুন।
-5x-3+2x^{2}=0
-5x পেতে -4x এবং -x একত্রিত করুন।
2x^{2}-5x-3=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=-5 ab=2\left(-3\right)=-6
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 2x^{2}+ax+bx-3 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-6 2,-3
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -6 প্রদান করে।
1-6=-5 2-3=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-6 b=1
সমাধানটি হল সেই জোড়া যা -5 যোগফল প্রদান করে।
\left(2x^{2}-6x\right)+\left(x-3\right)
\left(2x^{2}-6x\right)+\left(x-3\right) হিসেবে 2x^{2}-5x-3 পুনরায় লিখুন৷
2x\left(x-3\right)+x-3
2x^{2}-6x-এ 2x ফ্যাক্টর আউট করুন।
\left(x-3\right)\left(2x+1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-3 ফ্যাক্টর আউট করুন।
x=3 x=-\frac{1}{2}
সমীকরণের সমাধানগুলো খুঁজতে, x-3=0 এবং 2x+1=0 সমাধান করুন।
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
ভ্যারিয়েবল x -1,0 মানগুলোর যেকোনওটির সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে x\left(x+1\right) দিয়ে গুন করুন, x+1,x এর লঘিষ্ট সাধারণ গুণিতক।
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
x+1 কে 3 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-x\times 4-3x-3=-2x\left(x+1\right)
3x+3 এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
-x\times 4-3x-3=-2x^{2}-2x
-2x কে x+1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-x\times 4-3x-3+2x^{2}=-2x
উভয় সাইডে 2x^{2} যোগ করুন৷
-x\times 4-3x-3+2x^{2}+2x=0
উভয় সাইডে 2x যোগ করুন৷
-x\times 4-x-3+2x^{2}=0
-x পেতে -3x এবং 2x একত্রিত করুন।
-4x-x-3+2x^{2}=0
-4 পেতে -1 এবং 4 গুণ করুন।
-5x-3+2x^{2}=0
-5x পেতে -4x এবং -x একত্রিত করুন।
2x^{2}-5x-3=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য -5 এবং c এর জন্য -3 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
-5 এর বর্গ
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 কে 2 বার গুণ করুন।
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
-8 কে -3 বার গুণ করুন।
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
24 এ 25 যোগ করুন।
x=\frac{-\left(-5\right)±7}{2\times 2}
49 এর স্কোয়ার রুট নিন।
x=\frac{5±7}{2\times 2}
-5-এর বিপরীত হলো 5।
x=\frac{5±7}{4}
2 কে 2 বার গুণ করুন।
x=\frac{12}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{5±7}{4} যখন ± হল যোগ৷ 7 এ 5 যোগ করুন।
x=3
12 কে 4 দিয়ে ভাগ করুন।
x=-\frac{2}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{5±7}{4} যখন ± হল বিয়োগ৷ 5 থেকে 7 বাদ দিন।
x=-\frac{1}{2}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-2}{4} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=3 x=-\frac{1}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
ভ্যারিয়েবল x -1,0 মানগুলোর যেকোনওটির সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে x\left(x+1\right) দিয়ে গুন করুন, x+1,x এর লঘিষ্ট সাধারণ গুণিতক।
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
x+1 কে 3 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-x\times 4-3x-3=-2x\left(x+1\right)
3x+3 এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
-x\times 4-3x-3=-2x^{2}-2x
-2x কে x+1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-x\times 4-3x-3+2x^{2}=-2x
উভয় সাইডে 2x^{2} যোগ করুন৷
-x\times 4-3x-3+2x^{2}+2x=0
উভয় সাইডে 2x যোগ করুন৷
-x\times 4-x-3+2x^{2}=0
-x পেতে -3x এবং 2x একত্রিত করুন।
-x\times 4-x+2x^{2}=3
উভয় সাইডে 3 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
-4x-x+2x^{2}=3
-4 পেতে -1 এবং 4 গুণ করুন।
-5x+2x^{2}=3
-5x পেতে -4x এবং -x একত্রিত করুন।
2x^{2}-5x=3
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{2x^{2}-5x}{2}=\frac{3}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}-\frac{5}{2}x=\frac{3}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} পেতে x টার্মের গুণাঙ্ক -\frac{5}{2}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{5}{4}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{5}{4} এর বর্গ করুন।
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{25}{16} এ \frac{3}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
x^{2}-\frac{5}{2}x+\frac{25}{16} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
সিমপ্লিফাই।
x=3 x=-\frac{1}{2}
সমীকরণের উভয় দিকে \frac{5}{4} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}