মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}+6x+9=16
\left(x+3\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
x^{2}+6x+9-16=0
উভয় দিক থেকে 16 বিয়োগ করুন।
x^{2}+6x-7=0
-7 পেতে 9 থেকে 16 বাদ দিন।
a+b=6 ab=-7
সমীকরণটি সমাধান করতে, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) সূত্র ব্যবহার করে x^{2}+6x-7 গুণনীয়ক করুন। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=-1 b=7
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(x-1\right)\left(x+7\right)
প্রাপ্ত মানগুলো ব্যবহার করে গুণনীয়ক করা অভিব্যক্তি \left(x+a\right)\left(x+b\right) পুনরায় লিখুন।
x=1 x=-7
সমীকরণের সমাধানগুলো খুঁজতে, x-1=0 এবং x+7=0 সমাধান করুন।
x^{2}+6x+9=16
\left(x+3\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
x^{2}+6x+9-16=0
উভয় দিক থেকে 16 বিয়োগ করুন।
x^{2}+6x-7=0
-7 পেতে 9 থেকে 16 বাদ দিন।
a+b=6 ab=1\left(-7\right)=-7
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx-7 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=-1 b=7
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(x^{2}-x\right)+\left(7x-7\right)
\left(x^{2}-x\right)+\left(7x-7\right) হিসেবে x^{2}+6x-7 পুনরায় লিখুন৷
x\left(x-1\right)+7\left(x-1\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 7 ফ্যাক্টর আউট।
\left(x-1\right)\left(x+7\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-1 ফ্যাক্টর আউট করুন।
x=1 x=-7
সমীকরণের সমাধানগুলো খুঁজতে, x-1=0 এবং x+7=0 সমাধান করুন।
x^{2}+6x+9=16
\left(x+3\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
x^{2}+6x+9-16=0
উভয় দিক থেকে 16 বিয়োগ করুন।
x^{2}+6x-7=0
-7 পেতে 9 থেকে 16 বাদ দিন।
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য 6 এবং c এর জন্য -7 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
6 এর বর্গ
x=\frac{-6±\sqrt{36+28}}{2}
-4 কে -7 বার গুণ করুন।
x=\frac{-6±\sqrt{64}}{2}
28 এ 36 যোগ করুন।
x=\frac{-6±8}{2}
64 এর স্কোয়ার রুট নিন।
x=\frac{2}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-6±8}{2} যখন ± হল যোগ৷ 8 এ -6 যোগ করুন।
x=1
2 কে 2 দিয়ে ভাগ করুন।
x=-\frac{14}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-6±8}{2} যখন ± হল বিয়োগ৷ -6 থেকে 8 বাদ দিন।
x=-7
-14 কে 2 দিয়ে ভাগ করুন।
x=1 x=-7
সমীকরণটি এখন সমাধান করা হয়েছে।
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+3=4 x+3=-4
সিমপ্লিফাই।
x=1 x=-7
সমীকরণের উভয় দিক থেকে 3 বাদ দিন।