মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2\left(x^{2}+x\right)
ফ্যাক্টর আউট 2।
x\left(x+1\right)
বিবেচনা করুন x^{2}+x। ফ্যাক্টর আউট x।
2x\left(x+1\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
2x^{2}+2x=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-2±\sqrt{2^{2}}}{2\times 2}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-2±2}{2\times 2}
2^{2} এর স্কোয়ার রুট নিন।
x=\frac{-2±2}{4}
2 কে 2 বার গুণ করুন।
x=\frac{0}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{-2±2}{4} যখন ± হল যোগ৷ 2 এ -2 যোগ করুন।
x=0
0 কে 4 দিয়ে ভাগ করুন।
x=-\frac{4}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{-2±2}{4} যখন ± হল বিয়োগ৷ -2 থেকে 2 বাদ দিন।
x=-1
-4 কে 4 দিয়ে ভাগ করুন।
2x^{2}+2x=2x\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 0 ও x_{2} এর ক্ষেত্রে বিকল্প -1
2x^{2}+2x=2x\left(x+1\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷