মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image
w.r.t. r পার্থক্য করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
ঘাতে \frac{-r^{4}}{64r^{7}} বৃদ্ধি করতে, ঘাতটির লব এবং হর উভয়কেই বৃদ্ধি করুন এবং তার পর ভাগ করুন৷
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
\left(64r^{7}\right)^{\frac{2}{3}} প্রসারিত করুন।
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। \frac{14}{3} পেতে 7 এবং \frac{2}{3} গুণ করুন৷
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
\frac{2}{3} এর ঘাতে 64 গণনা করুন এবং 16 পান।
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
\left(-r^{4}\right)^{\frac{2}{3}} প্রসারিত করুন।
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। \frac{8}{3} পেতে 4 এবং \frac{2}{3} গুণ করুন৷
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
\frac{2}{3} এর ঘাতে -1 গণনা করুন এবং 1 পান।
\frac{1}{16r^{2}}
উভয় লব এবং হর এ r^{\frac{8}{3}} খুঁজে বের করা বাতিল করে দিন৷
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
যদি F দুটি পার্থক্যযোগ্য ফাংশন f\left(u\right) এবং u=g\left(x\right) এর কম্পোজিশন হয়, তাহলে যদি F\left(x\right)=f\left(g\left(x\right)\right), F এর ডেরিভেটিভ হল u বারের সাপেক্ষে f এর ডেরিভেটিভ ও x এর সাপেক্ষে g এর ডেরিভেটিভ, যা হল \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)।
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
যে কোনো দুটি পার্থক্যযোগ্য ফাংশনের জন্য, দুটি ফাংশনের ভাগফলের ডেরিভেটিভ হল হর গুণ লবের ডেরিভেটিভ বিয়োগ লব গুণ হরের ডেরিভেটিভ, সবগুলিকে হরের বর্গ দিয়ে ভাগ।
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
বহুপদি সংখ্যার ডেরিভেটিভ হল সেই টার্মগুলির ডেরিভেটিভের সমষ্টি। কোনো ধ্রুবক শব্দের ডেরিভেটিভ হল 0। ax^{n} এর ডেরিভেটিভ হল nax^{n-1}।
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
64r^{7} কে 4\left(-1\right)r^{4-1} বার গুণ করুন।
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
-r^{4} কে 7\times 64r^{7-1} বার গুণ করুন।
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
সিমপ্লিফাই।