মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন (complex solution)
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}-115x+4254=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-115\right)±\sqrt{\left(-115\right)^{2}-4\times 4254}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য -115 এবং c এর জন্য 4254 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-115\right)±\sqrt{13225-4\times 4254}}{2}
-115 এর বর্গ
x=\frac{-\left(-115\right)±\sqrt{13225-17016}}{2}
-4 কে 4254 বার গুণ করুন।
x=\frac{-\left(-115\right)±\sqrt{-3791}}{2}
-17016 এ 13225 যোগ করুন।
x=\frac{-\left(-115\right)±\sqrt{3791}i}{2}
-3791 এর স্কোয়ার রুট নিন।
x=\frac{115±\sqrt{3791}i}{2}
-115-এর বিপরীত হলো 115।
x=\frac{115+\sqrt{3791}i}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{115±\sqrt{3791}i}{2} যখন ± হল যোগ৷ i\sqrt{3791} এ 115 যোগ করুন।
x=\frac{-\sqrt{3791}i+115}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{115±\sqrt{3791}i}{2} যখন ± হল বিয়োগ৷ 115 থেকে i\sqrt{3791} বাদ দিন।
x=\frac{115+\sqrt{3791}i}{2} x=\frac{-\sqrt{3791}i+115}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}-115x+4254=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
x^{2}-115x+4254-4254=-4254
সমীকরণের উভয় দিক থেকে 4254 বাদ দিন।
x^{2}-115x=-4254
4254 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x^{2}-115x+\left(-\frac{115}{2}\right)^{2}=-4254+\left(-\frac{115}{2}\right)^{2}
-\frac{115}{2} পেতে x টার্মের গুণাঙ্ক -115-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{115}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-115x+\frac{13225}{4}=-4254+\frac{13225}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{115}{2} এর বর্গ করুন।
x^{2}-115x+\frac{13225}{4}=-\frac{3791}{4}
\frac{13225}{4} এ -4254 যোগ করুন।
\left(x-\frac{115}{2}\right)^{2}=-\frac{3791}{4}
x^{2}-115x+\frac{13225}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{115}{2}\right)^{2}}=\sqrt{-\frac{3791}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{115}{2}=\frac{\sqrt{3791}i}{2} x-\frac{115}{2}=-\frac{\sqrt{3791}i}{2}
সিমপ্লিফাই।
x=\frac{115+\sqrt{3791}i}{2} x=\frac{-\sqrt{3791}i+115}{2}
সমীকরণের উভয় দিকে \frac{115}{2} যোগ করুন।