মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x^{2}-x-3=0
সমীকরণের উভয় দিককে 2 দিয়ে গুণ করুন।
a+b=-1 ab=2\left(-3\right)=-6
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 2x^{2}+ax+bx-3 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-6 2,-3
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -6 প্রদান করে।
1-6=-5 2-3=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-3 b=2
সমাধানটি হল সেই জোড়া যা -1 যোগফল প্রদান করে।
\left(2x^{2}-3x\right)+\left(2x-3\right)
\left(2x^{2}-3x\right)+\left(2x-3\right) হিসেবে 2x^{2}-x-3 পুনরায় লিখুন৷
x\left(2x-3\right)+2x-3
2x^{2}-3x-এ x ফ্যাক্টর আউট করুন।
\left(2x-3\right)\left(x+1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 2x-3 ফ্যাক্টর আউট করুন।
x=\frac{3}{2} x=-1
সমীকরণের সমাধানগুলো খুঁজতে, 2x-3=0 এবং x+1=0 সমাধান করুন।
2x^{2}-x-3=0
সমীকরণের উভয় দিককে 2 দিয়ে গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য -1 এবং c এর জন্য -3 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
-4 কে 2 বার গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
-8 কে -3 বার গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
24 এ 1 যোগ করুন।
x=\frac{-\left(-1\right)±5}{2\times 2}
25 এর স্কোয়ার রুট নিন।
x=\frac{1±5}{2\times 2}
-1-এর বিপরীত হলো 1।
x=\frac{1±5}{4}
2 কে 2 বার গুণ করুন।
x=\frac{6}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{1±5}{4} যখন ± হল যোগ৷ 5 এ 1 যোগ করুন।
x=\frac{3}{2}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{6}{4} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{4}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{1±5}{4} যখন ± হল বিয়োগ৷ 1 থেকে 5 বাদ দিন।
x=-1
-4 কে 4 দিয়ে ভাগ করুন।
x=\frac{3}{2} x=-1
সমীকরণটি এখন সমাধান করা হয়েছে।
2x^{2}-x-3=0
সমীকরণের উভয় দিককে 2 দিয়ে গুণ করুন।
2x^{2}-x=3
উভয় সাইডে 3 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
\frac{2x^{2}-x}{2}=\frac{3}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}-\frac{1}{2}x=\frac{3}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} পেতে x টার্মের গুণাঙ্ক -\frac{1}{2}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{1}{4}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{1}{4} এর বর্গ করুন।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{1}{16} এ \frac{3}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
সিমপ্লিফাই।
x=\frac{3}{2} x=-1
সমীকরণের উভয় দিকে \frac{1}{4} যোগ করুন।