মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}+10x+16=0
উভয় সাইডে 16 যোগ করুন৷
a+b=10 ab=16
সমীকরণটি সমাধান করতে, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) সূত্র ব্যবহার করে x^{2}+10x+16 গুণনীয়ক করুন। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,16 2,8 4,4
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 16 প্রদান করে।
1+16=17 2+8=10 4+4=8
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=2 b=8
সমাধানটি হল সেই জোড়া যা 10 যোগফল প্রদান করে।
\left(x+2\right)\left(x+8\right)
প্রাপ্ত মানগুলো ব্যবহার করে গুণনীয়ক করা অভিব্যক্তি \left(x+a\right)\left(x+b\right) পুনরায় লিখুন।
x=-2 x=-8
সমীকরণের সমাধানগুলো খুঁজতে, x+2=0 এবং x+8=0 সমাধান করুন।
x^{2}+10x+16=0
উভয় সাইডে 16 যোগ করুন৷
a+b=10 ab=1\times 16=16
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx+16 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,16 2,8 4,4
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 16 প্রদান করে।
1+16=17 2+8=10 4+4=8
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=2 b=8
সমাধানটি হল সেই জোড়া যা 10 যোগফল প্রদান করে।
\left(x^{2}+2x\right)+\left(8x+16\right)
\left(x^{2}+2x\right)+\left(8x+16\right) হিসেবে x^{2}+10x+16 পুনরায় লিখুন৷
x\left(x+2\right)+8\left(x+2\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 8 ফ্যাক্টর আউট।
\left(x+2\right)\left(x+8\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x+2 ফ্যাক্টর আউট করুন।
x=-2 x=-8
সমীকরণের সমাধানগুলো খুঁজতে, x+2=0 এবং x+8=0 সমাধান করুন।
x^{2}+10x=-16
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x^{2}+10x-\left(-16\right)=-16-\left(-16\right)
সমীকরণের উভয় দিকে 16 যোগ করুন।
x^{2}+10x-\left(-16\right)=0
-16 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x^{2}+10x+16=0
0 থেকে -16 বাদ দিন।
x=\frac{-10±\sqrt{10^{2}-4\times 16}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য 10 এবং c এর জন্য 16 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-10±\sqrt{100-4\times 16}}{2}
10 এর বর্গ
x=\frac{-10±\sqrt{100-64}}{2}
-4 কে 16 বার গুণ করুন।
x=\frac{-10±\sqrt{36}}{2}
-64 এ 100 যোগ করুন।
x=\frac{-10±6}{2}
36 এর স্কোয়ার রুট নিন।
x=-\frac{4}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-10±6}{2} যখন ± হল যোগ৷ 6 এ -10 যোগ করুন।
x=-2
-4 কে 2 দিয়ে ভাগ করুন।
x=-\frac{16}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-10±6}{2} যখন ± হল বিয়োগ৷ -10 থেকে 6 বাদ দিন।
x=-8
-16 কে 2 দিয়ে ভাগ করুন।
x=-2 x=-8
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}+10x=-16
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
x^{2}+10x+5^{2}=-16+5^{2}
5 পেতে x টার্মের গুণাঙ্ক 10-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে 5-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+10x+25=-16+25
5 এর বর্গ
x^{2}+10x+25=9
25 এ -16 যোগ করুন।
\left(x+5\right)^{2}=9
x^{2}+10x+25 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+5\right)^{2}}=\sqrt{9}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+5=3 x+5=-3
সিমপ্লিফাই।
x=-2 x=-8
সমীকরণের উভয় দিক থেকে 5 বাদ দিন।