মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন (complex solution)
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}+10x=-50
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x^{2}+10x-\left(-50\right)=-50-\left(-50\right)
সমীকরণের উভয় দিকে 50 যোগ করুন।
x^{2}+10x-\left(-50\right)=0
-50 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x^{2}+10x+50=0
0 থেকে -50 বাদ দিন।
x=\frac{-10±\sqrt{10^{2}-4\times 50}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য 10 এবং c এর জন্য 50 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-10±\sqrt{100-4\times 50}}{2}
10 এর বর্গ
x=\frac{-10±\sqrt{100-200}}{2}
-4 কে 50 বার গুণ করুন।
x=\frac{-10±\sqrt{-100}}{2}
-200 এ 100 যোগ করুন।
x=\frac{-10±10i}{2}
-100 এর স্কোয়ার রুট নিন।
x=\frac{-10+10i}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-10±10i}{2} যখন ± হল যোগ৷ 10i এ -10 যোগ করুন।
x=-5+5i
-10+10i কে 2 দিয়ে ভাগ করুন।
x=\frac{-10-10i}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-10±10i}{2} যখন ± হল বিয়োগ৷ -10 থেকে 10i বাদ দিন।
x=-5-5i
-10-10i কে 2 দিয়ে ভাগ করুন।
x=-5+5i x=-5-5i
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}+10x=-50
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
x^{2}+10x+5^{2}=-50+5^{2}
5 পেতে x টার্মের গুণাঙ্ক 10-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে 5-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+10x+25=-50+25
5 এর বর্গ
x^{2}+10x+25=-25
25 এ -50 যোগ করুন।
\left(x+5\right)^{2}=-25
x^{2}+10x+25 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+5\right)^{2}}=\sqrt{-25}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+5=5i x+5=-5i
সিমপ্লিফাই।
x=-5+5i x=-5-5i
সমীকরণের উভয় দিক থেকে 5 বাদ দিন।