মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন (complex solution)
Tick mark Image
বাস্তব অংশ (complex solution)
Tick mark Image
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\sqrt{2}i+3\sqrt{-8}-4\sqrt{-18}
গুণনীয়ক -2=2\left(-1\right)। \sqrt{2\left(-1\right)} এর গুণফলের বর্গমূলকে \sqrt{2}\sqrt{-1} এর বর্গমূলের গুণফল হিসেবে লিখুন। সংজ্ঞা অনুসারে, -1 এর বর্গ মূল হল i৷
\sqrt{2}i+3\times \left(2i\right)\sqrt{2}-4\sqrt{-18}
গুণনীয়ক -8=\left(2i\right)^{2}\times 2। \sqrt{\left(2i\right)^{2}\times 2} এর গুণফলের বর্গমূলকে \sqrt{\left(2i\right)^{2}}\sqrt{2} এর বর্গমূলের গুণফল হিসেবে লিখুন। \left(2i\right)^{2} এর স্কোয়ার রুট নিন।
\sqrt{2}i+6i\sqrt{2}-4\sqrt{-18}
6i পেতে 3 এবং 2i গুণ করুন।
7i\sqrt{2}-4\sqrt{-18}
7i\sqrt{2} পেতে \sqrt{2}i এবং 6i\sqrt{2} একত্রিত করুন।
7i\sqrt{2}-4\times \left(3i\right)\sqrt{2}
গুণনীয়ক -18=\left(3i\right)^{2}\times 2। \sqrt{\left(3i\right)^{2}\times 2} এর গুণফলের বর্গমূলকে \sqrt{\left(3i\right)^{2}}\sqrt{2} এর বর্গমূলের গুণফল হিসেবে লিখুন। \left(3i\right)^{2} এর স্কোয়ার রুট নিন।
7i\sqrt{2}-12i\sqrt{2}
-12i পেতে -4 এবং 3i গুণ করুন।
-5i\sqrt{2}
-5i\sqrt{2} পেতে 7i\sqrt{2} এবং -12i\sqrt{2} একত্রিত করুন।