w.r.t. z পার্থক্য করুন
\cos(z)
মূল্যায়ন করুন
\sin(z)
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\frac{\mathrm{d}}{\mathrm{d}z}(\sin(z))=\left(\lim_{h\to 0}\frac{\sin(z+h)-\sin(z)}{h}\right)
f\left(x\right) ফাংশনের জন্য, \frac{f\left(x+h\right)-f\left(x\right)}{h} হল ডেরিভেটিভের সীমা যেহেতু h 0 হয়ে যায়, যদি সেই সীমা থাকে।
\lim_{h\to 0}\frac{\sin(z+h)-\sin(z)}{h}
সাইনের জন্য যোগে সূত্র ব্যবহার করুন।
\lim_{h\to 0}\frac{\sin(z)\left(\cos(h)-1\right)+\cos(z)\sin(h)}{h}
ফ্যাক্টর আউট \sin(z)।
\left(\lim_{h\to 0}\sin(z)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(z)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
সীমা আবার লিখুন।
\sin(z)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(z)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
যখন সীমা গণনার সময় h 0 পর্যন্ত যায় তখন z অপরিবর্তনীয় থাকে এই বিষযটি ব্যবহার করুন।
\sin(z)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(z)
সীমা \lim_{z\to 0}\frac{\sin(z)}{z} হল 1।
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
\lim_{h\to 0}\frac{\cos(h)-1}{h} সীমার মূল্যায়ন করার জন্য, প্রথমে লব ও হরকে \cos(h)+1 দ্বারা গুণ করুন।
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 কে \cos(h)-1 বার গুণ করুন।
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
পিথাগোরাসের আইডেন্টিটি ব্যবহার করুন।
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
সীমা আবার লিখুন।
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
সীমা \lim_{z\to 0}\frac{\sin(z)}{z} হল 1।
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} 0 এ অবিরত এই বিষয়টি ব্যবহার করুন।
\cos(z)
\sin(z)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(z) এক্সপ্রেশনে 0 এর মান পরিবর্ত করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}