মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+3y=5,2x-5y=3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+3y=5
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-3y+5
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
2\left(-3y+5\right)-5y=3
অন্য সমীকরণ 2x-5y=3 এ x এর জন্য -3y+5 বিপরীত করু ন।
-6y+10-5y=3
2 কে -3y+5 বার গুণ করুন।
-11y+10=3
-5y এ -6y যোগ করুন।
-11y=-7
সমীকরণের উভয় দিক থেকে 10 বাদ দিন।
y=\frac{7}{11}
-11 দিয়ে উভয় দিককে ভাগ করুন।
x=-3\times \frac{7}{11}+5
x=-3y+5 এ y এর জন্য পরিবর্ত হিসাবে \frac{7}{11} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{21}{11}+5
-3 কে \frac{7}{11} বার গুণ করুন।
x=\frac{34}{11}
-\frac{21}{11} এ 5 যোগ করুন।
x=\frac{34}{11},y=\frac{7}{11}
সিস্টেম এখন সমাধান করা হয়েছে।
x+3y=5,2x-5y=3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&3\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}1&3\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
\left(\begin{matrix}1&3\\2&-5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-3\times 2}&-\frac{3}{-5-3\times 2}\\-\frac{2}{-5-3\times 2}&\frac{1}{-5-3\times 2}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&\frac{3}{11}\\\frac{2}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 5+\frac{3}{11}\times 3\\\frac{2}{11}\times 5-\frac{1}{11}\times 3\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{34}{11}\\\frac{7}{11}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{34}{11},y=\frac{7}{11}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+3y=5,2x-5y=3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2x+2\times 3y=2\times 5,2x-5y=3
x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
2x+6y=10,2x-5y=3
সিমপ্লিফাই।
2x-2x+6y+5y=10-3
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2x+6y=10 থেকে 2x-5y=3 বাদ দিন।
6y+5y=10-3
-2x এ 2x যোগ করুন। টার্ম 2x এবং -2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
11y=10-3
5y এ 6y যোগ করুন।
11y=7
-3 এ 10 যোগ করুন।
y=\frac{7}{11}
11 দিয়ে উভয় দিককে ভাগ করুন।
2x-5\times \frac{7}{11}=3
2x-5y=3 এ y এর জন্য পরিবর্ত হিসাবে \frac{7}{11} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x-\frac{35}{11}=3
-5 কে \frac{7}{11} বার গুণ করুন।
2x=\frac{68}{11}
সমীকরণের উভয় দিকে \frac{35}{11} যোগ করুন।
x=\frac{34}{11}
2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{34}{11},y=\frac{7}{11}
সিস্টেম এখন সমাধান করা হয়েছে।