মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x-y=-6,2x-3y=-3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-x-y=-6
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-x=y-6
সমীকরণের উভয় দিকে y যোগ করুন।
x=-\left(y-6\right)
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-y+6
-1 কে y-6 বার গুণ করুন।
2\left(-y+6\right)-3y=-3
অন্য সমীকরণ 2x-3y=-3 এ x এর জন্য -y+6 বিপরীত করু ন।
-2y+12-3y=-3
2 কে -y+6 বার গুণ করুন।
-5y+12=-3
-3y এ -2y যোগ করুন।
-5y=-15
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
y=3
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=-3+6
x=-y+6 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=3
-3 এ 6 যোগ করুন।
x=3,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
-x-y=-6,2x-3y=-3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-\left(-3\right)-\left(-2\right)}&-\frac{-1}{-\left(-3\right)-\left(-2\right)}\\-\frac{2}{-\left(-3\right)-\left(-2\right)}&-\frac{1}{-\left(-3\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-6\\-3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\left(-6\right)+\frac{1}{5}\left(-3\right)\\-\frac{2}{5}\left(-6\right)-\frac{1}{5}\left(-3\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-x-y=-6,2x-3y=-3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\left(-1\right)x+2\left(-1\right)y=2\left(-6\right),-2x-\left(-3y\right)=-\left(-3\right)
-x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন।
-2x-2y=-12,-2x+3y=3
সিমপ্লিফাই।
-2x+2x-2y-3y=-12-3
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -2x-2y=-12 থেকে -2x+3y=3 বাদ দিন।
-2y-3y=-12-3
2x এ -2x যোগ করুন। টার্ম -2x এবং 2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-5y=-12-3
-3y এ -2y যোগ করুন।
-5y=-15
-3 এ -12 যোগ করুন।
y=3
-5 দিয়ে উভয় দিককে ভাগ করুন।
2x-3\times 3=-3
2x-3y=-3 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x-9=-3
-3 কে 3 বার গুণ করুন।
2x=6
সমীকরণের উভয় দিকে 9 যোগ করুন।
x=3
2 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=3
সিস্টেম এখন সমাধান করা হয়েছে।