x, y এর জন্য সমাধান করুন
x=-3
y=-2
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
5x-4y=-7,-6x+8y=2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x-4y=-7
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=4y-7
সমীকরণের উভয় দিকে 4y যোগ করুন।
x=\frac{1}{5}\left(4y-7\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{4}{5}y-\frac{7}{5}
\frac{1}{5} কে 4y-7 বার গুণ করুন।
-6\left(\frac{4}{5}y-\frac{7}{5}\right)+8y=2
অন্য সমীকরণ -6x+8y=2 এ x এর জন্য \frac{4y-7}{5} বিপরীত করু ন।
-\frac{24}{5}y+\frac{42}{5}+8y=2
-6 কে \frac{4y-7}{5} বার গুণ করুন।
\frac{16}{5}y+\frac{42}{5}=2
8y এ -\frac{24y}{5} যোগ করুন।
\frac{16}{5}y=-\frac{32}{5}
সমীকরণের উভয় দিক থেকে \frac{42}{5} বাদ দিন।
y=-2
\frac{16}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{4}{5}\left(-2\right)-\frac{7}{5}
x=\frac{4}{5}y-\frac{7}{5} এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-8-7}{5}
\frac{4}{5} কে -2 বার গুণ করুন।
x=-3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{8}{5} এ -\frac{7}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-3,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।
5x-4y=-7,-6x+8y=2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&8\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5\times 8-\left(-4\left(-6\right)\right)}&-\frac{-4}{5\times 8-\left(-4\left(-6\right)\right)}\\-\frac{-6}{5\times 8-\left(-4\left(-6\right)\right)}&\frac{5}{5\times 8-\left(-4\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\\frac{3}{8}&\frac{5}{16}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-7\right)+\frac{1}{4}\times 2\\\frac{3}{8}\left(-7\right)+\frac{5}{16}\times 2\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
পাটিগণিত করুন।
x=-3,y=-2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x-4y=-7,-6x+8y=2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-6\times 5x-6\left(-4\right)y=-6\left(-7\right),5\left(-6\right)x+5\times 8y=5\times 2
5x এবং -6x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -6 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
-30x+24y=42,-30x+40y=10
সিমপ্লিফাই।
-30x+30x+24y-40y=42-10
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -30x+24y=42 থেকে -30x+40y=10 বাদ দিন।
24y-40y=42-10
30x এ -30x যোগ করুন। টার্ম -30x এবং 30x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-16y=42-10
-40y এ 24y যোগ করুন।
-16y=32
-10 এ 42 যোগ করুন।
y=-2
-16 দিয়ে উভয় দিককে ভাগ করুন।
-6x+8\left(-2\right)=2
-6x+8y=2 এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-6x-16=2
8 কে -2 বার গুণ করুন।
-6x=18
সমীকরণের উভয় দিকে 16 যোগ করুন।
x=-3
-6 দিয়ে উভয় দিককে ভাগ করুন।
x=-3,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}