মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

y-x=3
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2x-y=4,-x+y=3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x-y=4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=y+4
সমীকরণের উভয় দিকে y যোগ করুন।
x=\frac{1}{2}\left(y+4\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{2}y+2
\frac{1}{2} কে y+4 বার গুণ করুন।
-\left(\frac{1}{2}y+2\right)+y=3
অন্য সমীকরণ -x+y=3 এ x এর জন্য \frac{y}{2}+2 বিপরীত করু ন।
-\frac{1}{2}y-2+y=3
-1 কে \frac{y}{2}+2 বার গুণ করুন।
\frac{1}{2}y-2=3
y এ -\frac{y}{2} যোগ করুন।
\frac{1}{2}y=5
সমীকরণের উভয় দিকে 2 যোগ করুন।
y=10
2 দিয়ে উভয় দিককে গুণ করুন।
x=\frac{1}{2}\times 10+2
x=\frac{1}{2}y+2 এ y এর জন্য পরিবর্ত হিসাবে 10 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=5+2
\frac{1}{2} কে 10 বার গুণ করুন।
x=7
5 এ 2 যোগ করুন।
x=7,y=10
সিস্টেম এখন সমাধান করা হয়েছে।
y-x=3
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2x-y=4,-x+y=3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-\left(-1\right)\right)}&-\frac{-1}{2-\left(-\left(-1\right)\right)}\\-\frac{-1}{2-\left(-\left(-1\right)\right)}&\frac{2}{2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4+3\\4+2\times 3\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\10\end{matrix}\right)
পাটিগণিত করুন।
x=7,y=10
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
y-x=3
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2x-y=4,-x+y=3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-2x-\left(-y\right)=-4,2\left(-1\right)x+2y=2\times 3
2x এবং -x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
-2x+y=-4,-2x+2y=6
সিমপ্লিফাই।
-2x+2x+y-2y=-4-6
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -2x+y=-4 থেকে -2x+2y=6 বাদ দিন।
y-2y=-4-6
2x এ -2x যোগ করুন। টার্ম -2x এবং 2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-y=-4-6
-2y এ y যোগ করুন।
-y=-10
-6 এ -4 যোগ করুন।
y=10
-1 দিয়ে উভয় দিককে ভাগ করুন।
-x+10=3
-x+y=3 এ y এর জন্য পরিবর্ত হিসাবে 10 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-x=-7
সমীকরণের উভয় দিক থেকে 10 বাদ দিন।
x=7
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=7,y=10
সিস্টেম এখন সমাধান করা হয়েছে।