মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+4y=40,-x+8y=68
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+4y=40
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-4y+40
সমীকরণের উভয় দিক থেকে 4y বাদ দিন।
-\left(-4y+40\right)+8y=68
অন্য সমীকরণ -x+8y=68 এ x এর জন্য -4y+40 বিপরীত করু ন।
4y-40+8y=68
-1 কে -4y+40 বার গুণ করুন।
12y-40=68
8y এ 4y যোগ করুন।
12y=108
সমীকরণের উভয় দিকে 40 যোগ করুন।
y=9
12 দিয়ে উভয় দিককে ভাগ করুন।
x=-4\times 9+40
x=-4y+40 এ y এর জন্য পরিবর্ত হিসাবে 9 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-36+40
-4 কে 9 বার গুণ করুন।
x=4
-36 এ 40 যোগ করুন।
x=4,y=9
সিস্টেম এখন সমাধান করা হয়েছে।
x+4y=40,-x+8y=68
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&4\\-1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\68\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}1&4\\-1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
\left(\begin{matrix}1&4\\-1&8\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-4\left(-1\right)}&-\frac{4}{8-4\left(-1\right)}\\-\frac{-1}{8-4\left(-1\right)}&\frac{1}{8-4\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}40\\68\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}40\\68\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 40-\frac{1}{3}\times 68\\\frac{1}{12}\times 40+\frac{1}{12}\times 68\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\9\end{matrix}\right)
পাটিগণিত করুন।
x=4,y=9
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+4y=40,-x+8y=68
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-x-4y=-40,-x+8y=68
x এবং -x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
-x+x-4y-8y=-40-68
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -x-4y=-40 থেকে -x+8y=68 বাদ দিন।
-4y-8y=-40-68
x এ -x যোগ করুন। টার্ম -x এবং x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-12y=-40-68
-8y এ -4y যোগ করুন।
-12y=-108
-68 এ -40 যোগ করুন।
y=9
-12 দিয়ে উভয় দিককে ভাগ করুন।
-x+8\times 9=68
-x+8y=68 এ y এর জন্য পরিবর্ত হিসাবে 9 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-x+72=68
8 কে 9 বার গুণ করুন।
-x=-4
সমীকরণের উভয় দিক থেকে 72 বাদ দিন।
x=4
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=4,y=9
সিস্টেম এখন সমাধান করা হয়েছে।