x, y এর জন্য সমাধান করুন
x = \frac{51}{10} = 5\frac{1}{10} = 5.1
y = -\frac{19}{10} = -1\frac{9}{10} = -1.9
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
3x+7y=2,x-y=7
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3x+7y=2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
3x=-7y+2
সমীকরণের উভয় দিক থেকে 7y বাদ দিন।
x=\frac{1}{3}\left(-7y+2\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{7}{3}y+\frac{2}{3}
\frac{1}{3} কে -7y+2 বার গুণ করুন।
-\frac{7}{3}y+\frac{2}{3}-y=7
অন্য সমীকরণ x-y=7 এ x এর জন্য \frac{-7y+2}{3} বিপরীত করু ন।
-\frac{10}{3}y+\frac{2}{3}=7
-y এ -\frac{7y}{3} যোগ করুন।
-\frac{10}{3}y=\frac{19}{3}
সমীকরণের উভয় দিক থেকে \frac{2}{3} বাদ দিন।
y=-\frac{19}{10}
-\frac{10}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{7}{3}\left(-\frac{19}{10}\right)+\frac{2}{3}
x=-\frac{7}{3}y+\frac{2}{3} এ y এর জন্য পরিবর্ত হিসাবে -\frac{19}{10} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{133}{30}+\frac{2}{3}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{7}{3} কে -\frac{19}{10} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{51}{10}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{133}{30} এ \frac{2}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{51}{10},y=-\frac{19}{10}
সিস্টেম এখন সমাধান করা হয়েছে।
3x+7y=2,x-y=7
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&7\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\7\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&7\\1&-1\end{matrix}\right))\left(\begin{matrix}3&7\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\7\end{matrix}\right)
\left(\begin{matrix}3&7\\1&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\7\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&-1\end{matrix}\right))\left(\begin{matrix}2\\7\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-7}&-\frac{7}{3\left(-1\right)-7}\\-\frac{1}{3\left(-1\right)-7}&\frac{3}{3\left(-1\right)-7}\end{matrix}\right)\left(\begin{matrix}2\\7\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{7}{10}\\\frac{1}{10}&-\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}2\\7\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 2+\frac{7}{10}\times 7\\\frac{1}{10}\times 2-\frac{3}{10}\times 7\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{51}{10}\\-\frac{19}{10}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{51}{10},y=-\frac{19}{10}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
3x+7y=2,x-y=7
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3x+7y=2,3x+3\left(-1\right)y=3\times 7
3x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন।
3x+7y=2,3x-3y=21
সিমপ্লিফাই।
3x-3x+7y+3y=2-21
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3x+7y=2 থেকে 3x-3y=21 বাদ দিন।
7y+3y=2-21
-3x এ 3x যোগ করুন। টার্ম 3x এবং -3x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
10y=2-21
3y এ 7y যোগ করুন।
10y=-19
-21 এ 2 যোগ করুন।
y=-\frac{19}{10}
10 দিয়ে উভয় দিককে ভাগ করুন।
x-\left(-\frac{19}{10}\right)=7
x-y=7 এ y এর জন্য পরিবর্ত হিসাবে -\frac{19}{10} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{51}{10}
সমীকরণের উভয় দিক থেকে \frac{19}{10} বাদ দিন।
x=\frac{51}{10},y=-\frac{19}{10}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}