মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

10x-10y=-10,-10x+8y=12
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
10x-10y=-10
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
10x=10y-10
সমীকরণের উভয় দিকে 10y যোগ করুন।
x=\frac{1}{10}\left(10y-10\right)
10 দিয়ে উভয় দিককে ভাগ করুন।
x=y-1
\frac{1}{10} কে -10+10y বার গুণ করুন।
-10\left(y-1\right)+8y=12
অন্য সমীকরণ -10x+8y=12 এ x এর জন্য y-1 বিপরীত করু ন।
-10y+10+8y=12
-10 কে y-1 বার গুণ করুন।
-2y+10=12
8y এ -10y যোগ করুন।
-2y=2
সমীকরণের উভয় দিক থেকে 10 বাদ দিন।
y=-1
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=-1-1
x=y-1 এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-2
-1 এ -1 যোগ করুন।
x=-2,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।
10x-10y=-10,-10x+8y=12
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\12\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{10\times 8-\left(-10\left(-10\right)\right)}&-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}\\-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}&\frac{10}{10\times 8-\left(-10\left(-10\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&-\frac{1}{2}\\-\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)-\frac{1}{2}\times 12\\-\frac{1}{2}\left(-10\right)-\frac{1}{2}\times 12\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
পাটিগণিত করুন।
x=-2,y=-1
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
10x-10y=-10,-10x+8y=12
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-10\times 10x-10\left(-10\right)y=-10\left(-10\right),10\left(-10\right)x+10\times 8y=10\times 12
10x এবং -10x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -10 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 10 দিয়ে গুণ করুন।
-100x+100y=100,-100x+80y=120
সিমপ্লিফাই।
-100x+100x+100y-80y=100-120
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -100x+100y=100 থেকে -100x+80y=120 বাদ দিন।
100y-80y=100-120
100x এ -100x যোগ করুন। টার্ম -100x এবং 100x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
20y=100-120
-80y এ 100y যোগ করুন।
20y=-20
-120 এ 100 যোগ করুন।
y=-1
20 দিয়ে উভয় দিককে ভাগ করুন।
-10x+8\left(-1\right)=12
-10x+8y=12 এ y এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-10x-8=12
8 কে -1 বার গুণ করুন।
-10x=20
সমীকরণের উভয় দিকে 8 যোগ করুন।
x=-2
-10 দিয়ে উভয় দিককে ভাগ করুন।
x=-2,y=-1
সিস্টেম এখন সমাধান করা হয়েছে।