মূল বিষয়বস্তুতে এড়িয়ে যান
y, x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

y-4x=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 4x বিয়োগ করুন।
y+x=18
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে x যোগ করুন৷
y-4x=-2,y+x=18
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
y-4x=-2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
y=4x-2
সমীকরণের উভয় দিকে 4x যোগ করুন।
4x-2+x=18
অন্য সমীকরণ y+x=18 এ y এর জন্য 4x-2 বিপরীত করু ন।
5x-2=18
x এ 4x যোগ করুন।
5x=20
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=4
5 দিয়ে উভয় দিককে ভাগ করুন।
y=4\times 4-2
y=4x-2 এ x এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=16-2
4 কে 4 বার গুণ করুন।
y=14
16 এ -2 যোগ করুন।
y=14,x=4
সিস্টেম এখন সমাধান করা হয়েছে।
y-4x=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 4x বিয়োগ করুন।
y+x=18
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে x যোগ করুন৷
y-4x=-2,y+x=18
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\18\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}1&-4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\right)}&-\frac{-4}{1-\left(-4\right)}\\-\frac{1}{1-\left(-4\right)}&\frac{1}{1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{4}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-2\right)+\frac{4}{5}\times 18\\-\frac{1}{5}\left(-2\right)+\frac{1}{5}\times 18\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
পাটিগণিত করুন।
y=14,x=4
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
y-4x=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 4x বিয়োগ করুন।
y+x=18
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে x যোগ করুন৷
y-4x=-2,y+x=18
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
y-y-4x-x=-2-18
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে y-4x=-2 থেকে y+x=18 বাদ দিন।
-4x-x=-2-18
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-5x=-2-18
-x এ -4x যোগ করুন।
-5x=-20
-18 এ -2 যোগ করুন।
x=4
-5 দিয়ে উভয় দিককে ভাগ করুন।
y+4=18
y+x=18 এ x এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=14
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
y=14,x=4
সিস্টেম এখন সমাধান করা হয়েছে।