মূল বিষয়বস্তুতে এড়িয়ে যান
y, x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

y+4x=2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 4x যোগ করুন৷
y+2x=-2
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 2x যোগ করুন৷
y+4x=2,y+2x=-2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
y+4x=2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
y=-4x+2
সমীকরণের উভয় দিক থেকে 4x বাদ দিন।
-4x+2+2x=-2
অন্য সমীকরণ y+2x=-2 এ y এর জন্য -4x+2 বিপরীত করু ন।
-2x+2=-2
2x এ -4x যোগ করুন।
-2x=-4
সমীকরণের উভয় দিক থেকে 2 বাদ দিন।
x=2
-2 দিয়ে উভয় দিককে ভাগ করুন।
y=-4\times 2+2
y=-4x+2 এ x এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=-8+2
-4 কে 2 বার গুণ করুন।
y=-6
-8 এ 2 যোগ করুন।
y=-6,x=2
সিস্টেম এখন সমাধান করা হয়েছে।
y+4x=2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 4x যোগ করুন৷
y+2x=-2
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 2x যোগ করুন৷
y+4x=2,y+2x=-2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}1&4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
\left(\begin{matrix}1&4\\1&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{4}{2-4}\\-\frac{1}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2+2\left(-2\right)\\\frac{1}{2}\times 2-\frac{1}{2}\left(-2\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
পাটিগণিত করুন।
y=-6,x=2
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
y+4x=2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 4x যোগ করুন৷
y+2x=-2
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় সাইডে 2x যোগ করুন৷
y+4x=2,y+2x=-2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
y-y+4x-2x=2+2
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে y+4x=2 থেকে y+2x=-2 বাদ দিন।
4x-2x=2+2
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
2x=2+2
-2x এ 4x যোগ করুন।
2x=4
2 এ 2 যোগ করুন।
x=2
2 দিয়ে উভয় দিককে ভাগ করুন।
y+2\times 2=-2
y+2x=-2 এ x এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y+4=-2
2 কে 2 বার গুণ করুন।
y=-6
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
y=-6,x=2
সিস্টেম এখন সমাধান করা হয়েছে।