মূল বিষয়বস্তুতে এড়িয়ে যান
y, x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

y+3x=1
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 3x যোগ করুন৷
y-3x=-5
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
y+3x=1,y-3x=-5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
y+3x=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
y=-3x+1
সমীকরণের উভয় দিক থেকে 3x বাদ দিন।
-3x+1-3x=-5
অন্য সমীকরণ y-3x=-5 এ y এর জন্য -3x+1 বিপরীত করু ন।
-6x+1=-5
-3x এ -3x যোগ করুন।
-6x=-6
সমীকরণের উভয় দিক থেকে 1 বাদ দিন।
x=1
-6 দিয়ে উভয় দিককে ভাগ করুন।
y=-3+1
y=-3x+1 এ x এর জন্য পরিবর্ত হিসাবে 1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=-2
-3 এ 1 যোগ করুন।
y=-2,x=1
সিস্টেম এখন সমাধান করা হয়েছে।
y+3x=1
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 3x যোগ করুন৷
y-3x=-5
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
y+3x=1,y-3x=-5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&3\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1&3\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
\left(\begin{matrix}1&3\\1&-3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-3}&-\frac{3}{-3-3}\\-\frac{1}{-3-3}&\frac{1}{-3-3}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\left(-5\right)\\\frac{1}{6}-\frac{1}{6}\left(-5\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
পাটিগণিত করুন।
y=-2,x=1
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
y+3x=1
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় সাইডে 3x যোগ করুন৷
y-3x=-5
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
y+3x=1,y-3x=-5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
y-y+3x+3x=1+5
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে y+3x=1 থেকে y-3x=-5 বাদ দিন।
3x+3x=1+5
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
6x=1+5
3x এ 3x যোগ করুন।
6x=6
5 এ 1 যোগ করুন।
x=1
6 দিয়ে উভয় দিককে ভাগ করুন।
y-3=-5
y-3x=-5 এ x এর জন্য পরিবর্ত হিসাবে 1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=-2
সমীকরণের উভয় দিকে 3 যোগ করুন।
y=-2,x=1
সিস্টেম এখন সমাধান করা হয়েছে।