মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x-y=4,5x-2y=2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x-y=4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=y+4
সমীকরণের উভয় দিকে y যোগ করুন।
5\left(y+4\right)-2y=2
অন্য সমীকরণ 5x-2y=2 এ x এর জন্য y+4 বিপরীত করু ন।
5y+20-2y=2
5 কে y+4 বার গুণ করুন।
3y+20=2
-2y এ 5y যোগ করুন।
3y=-18
সমীকরণের উভয় দিক থেকে 20 বাদ দিন।
y=-6
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-6+4
x=y+4 এ y এর জন্য পরিবর্ত হিসাবে -6 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-2
-6 এ 4 যোগ করুন।
x=-2,y=-6
সিস্টেম এখন সমাধান করা হয়েছে।
x-y=4,5x-2y=2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}1&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}1&-1\\5&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-5\right)}&-\frac{-1}{-2-\left(-5\right)}\\-\frac{5}{-2-\left(-5\right)}&\frac{1}{-2-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{3}\\-\frac{5}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 4+\frac{1}{3}\times 2\\-\frac{5}{3}\times 4+\frac{1}{3}\times 2\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-6\end{matrix}\right)
পাটিগণিত করুন।
x=-2,y=-6
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x-y=4,5x-2y=2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5x+5\left(-1\right)y=5\times 4,5x-2y=2
x এবং 5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
5x-5y=20,5x-2y=2
সিমপ্লিফাই।
5x-5x-5y+2y=20-2
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 5x-5y=20 থেকে 5x-2y=2 বাদ দিন।
-5y+2y=20-2
-5x এ 5x যোগ করুন। টার্ম 5x এবং -5x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-3y=20-2
2y এ -5y যোগ করুন।
-3y=18
-2 এ 20 যোগ করুন।
y=-6
-3 দিয়ে উভয় দিককে ভাগ করুন।
5x-2\left(-6\right)=2
5x-2y=2 এ y এর জন্য পরিবর্ত হিসাবে -6 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
5x+12=2
-2 কে -6 বার গুণ করুন।
5x=-10
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
x=-2
5 দিয়ে উভয় দিককে ভাগ করুন।
x=-2,y=-6
সিস্টেম এখন সমাধান করা হয়েছে।