মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x-3y=3,2x+3y=6
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x-3y=3
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=3y+3
সমীকরণের উভয় দিকে 3y যোগ করুন।
2\left(3y+3\right)+3y=6
অন্য সমীকরণ 2x+3y=6 এ x এর জন্য 3+3y বিপরীত করু ন।
6y+6+3y=6
2 কে 3+3y বার গুণ করুন।
9y+6=6
3y এ 6y যোগ করুন।
9y=0
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
y=0
9 দিয়ে উভয় দিককে ভাগ করুন।
x=3
x=3y+3 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=3,y=0
সিস্টেম এখন সমাধান করা হয়েছে।
x-3y=3,2x+3y=6
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
\left(\begin{matrix}1&-3\\2&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 2\right)}&-\frac{-3}{3-\left(-3\times 2\right)}\\-\frac{2}{3-\left(-3\times 2\right)}&\frac{1}{3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 3+\frac{1}{3}\times 6\\-\frac{2}{9}\times 3+\frac{1}{9}\times 6\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=0
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x-3y=3,2x+3y=6
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2x+2\left(-3\right)y=2\times 3,2x+3y=6
x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
2x-6y=6,2x+3y=6
সিমপ্লিফাই।
2x-2x-6y-3y=6-6
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2x-6y=6 থেকে 2x+3y=6 বাদ দিন।
-6y-3y=6-6
-2x এ 2x যোগ করুন। টার্ম 2x এবং -2x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-9y=6-6
-3y এ -6y যোগ করুন।
-9y=0
-6 এ 6 যোগ করুন।
y=0
-9 দিয়ে উভয় দিককে ভাগ করুন।
2x=6
2x+3y=6 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=3
2 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=0
সিস্টেম এখন সমাধান করা হয়েছে।