x, y এর জন্য সমাধান করুন
x=-5
y=-20
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x-7y=135
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 7y বিয়োগ করুন।
y-4x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 4x বিয়োগ করুন।
x-7y=135,-4x+y=0
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x-7y=135
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=7y+135
সমীকরণের উভয় দিকে 7y যোগ করুন।
-4\left(7y+135\right)+y=0
অন্য সমীকরণ -4x+y=0 এ x এর জন্য 7y+135 বিপরীত করু ন।
-28y-540+y=0
-4 কে 7y+135 বার গুণ করুন।
-27y-540=0
y এ -28y যোগ করুন।
-27y=540
সমীকরণের উভয় দিকে 540 যোগ করুন।
y=-20
-27 দিয়ে উভয় দিককে ভাগ করুন।
x=7\left(-20\right)+135
x=7y+135 এ y এর জন্য পরিবর্ত হিসাবে -20 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-140+135
7 কে -20 বার গুণ করুন।
x=-5
-140 এ 135 যোগ করুন।
x=-5,y=-20
সিস্টেম এখন সমাধান করা হয়েছে।
x-7y=135
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 7y বিয়োগ করুন।
y-4x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 4x বিয়োগ করুন।
x-7y=135,-4x+y=0
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}135\\0\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}135\\0\end{matrix}\right)
\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}135\\0\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}135\\0\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-7\left(-4\right)\right)}&-\frac{-7}{1-\left(-7\left(-4\right)\right)}\\-\frac{-4}{1-\left(-7\left(-4\right)\right)}&\frac{1}{1-\left(-7\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}135\\0\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{27}&-\frac{7}{27}\\-\frac{4}{27}&-\frac{1}{27}\end{matrix}\right)\left(\begin{matrix}135\\0\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{27}\times 135\\-\frac{4}{27}\times 135\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-20\end{matrix}\right)
পাটিগণিত করুন।
x=-5,y=-20
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x-7y=135
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 7y বিয়োগ করুন।
y-4x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 4x বিয়োগ করুন।
x-7y=135,-4x+y=0
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-4x-4\left(-7\right)y=-4\times 135,-4x+y=0
x এবং -4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
-4x+28y=-540,-4x+y=0
সিমপ্লিফাই।
-4x+4x+28y-y=-540
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -4x+28y=-540 থেকে -4x+y=0 বাদ দিন।
28y-y=-540
4x এ -4x যোগ করুন। টার্ম -4x এবং 4x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
27y=-540
-y এ 28y যোগ করুন।
y=-20
27 দিয়ে উভয় দিককে ভাগ করুন।
-4x-20=0
-4x+y=0 এ y এর জন্য পরিবর্ত হিসাবে -20 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-4x=20
সমীকরণের উভয় দিকে 20 যোগ করুন।
x=-5
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=-5,y=-20
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}