মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+y=9,3x+y=2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=9
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+9
সমীকরণের উভয় দিক থেকে y বাদ দিন।
3\left(-y+9\right)+y=2
অন্য সমীকরণ 3x+y=2 এ x এর জন্য -y+9 বিপরীত করু ন।
-3y+27+y=2
3 কে -y+9 বার গুণ করুন।
-2y+27=2
y এ -3y যোগ করুন।
-2y=-25
সমীকরণের উভয় দিক থেকে 27 বাদ দিন।
y=\frac{25}{2}
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{25}{2}+9
x=-y+9 এ y এর জন্য পরিবর্ত হিসাবে \frac{25}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{7}{2}
-\frac{25}{2} এ 9 যোগ করুন।
x=-\frac{7}{2},y=\frac{25}{2}
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=9,3x+y=2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
\left(\begin{matrix}1&1\\3&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}9\\2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}9\\2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 9+\frac{1}{2}\times 2\\\frac{3}{2}\times 9-\frac{1}{2}\times 2\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2}\\\frac{25}{2}\end{matrix}\right)
পাটিগণিত করুন।
x=-\frac{7}{2},y=\frac{25}{2}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=9,3x+y=2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
x-3x+y-y=9-2
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে x+y=9 থেকে 3x+y=2 বাদ দিন।
x-3x=9-2
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-2x=9-2
-3x এ x যোগ করুন।
-2x=7
-2 এ 9 যোগ করুন।
x=-\frac{7}{2}
-2 দিয়ে উভয় দিককে ভাগ করুন।
3\left(-\frac{7}{2}\right)+y=2
3x+y=2 এ x এর জন্য পরিবর্ত হিসাবে -\frac{7}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
-\frac{21}{2}+y=2
3 কে -\frac{7}{2} বার গুণ করুন।
y=\frac{25}{2}
সমীকরণের উভয় দিকে \frac{21}{2} যোগ করুন।
x=-\frac{7}{2},y=\frac{25}{2}
সিস্টেম এখন সমাধান করা হয়েছে।