মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+y=25,5x+4y=115
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=25
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+25
সমীকরণের উভয় দিক থেকে y বাদ দিন।
5\left(-y+25\right)+4y=115
অন্য সমীকরণ 5x+4y=115 এ x এর জন্য -y+25 বিপরীত করু ন।
-5y+125+4y=115
5 কে -y+25 বার গুণ করুন।
-y+125=115
4y এ -5y যোগ করুন।
-y=-10
সমীকরণের উভয় দিক থেকে 125 বাদ দিন।
y=10
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-10+25
x=-y+25 এ y এর জন্য পরিবর্ত হিসাবে 10 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=15
-10 এ 25 যোগ করুন।
x=15,y=10
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=25,5x+4y=115
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\115\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\5&4\end{matrix}\right))\left(\begin{matrix}1&1\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&4\end{matrix}\right))\left(\begin{matrix}25\\115\end{matrix}\right)
\left(\begin{matrix}1&1\\5&4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&4\end{matrix}\right))\left(\begin{matrix}25\\115\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&4\end{matrix}\right))\left(\begin{matrix}25\\115\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-5}&-\frac{1}{4-5}\\-\frac{5}{4-5}&\frac{1}{4-5}\end{matrix}\right)\left(\begin{matrix}25\\115\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&1\\5&-1\end{matrix}\right)\left(\begin{matrix}25\\115\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 25+115\\5\times 25-115\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
পাটিগণিত করুন।
x=15,y=10
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=25,5x+4y=115
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5x+5y=5\times 25,5x+4y=115
x এবং 5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
5x+5y=125,5x+4y=115
সিমপ্লিফাই।
5x-5x+5y-4y=125-115
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 5x+5y=125 থেকে 5x+4y=115 বাদ দিন।
5y-4y=125-115
-5x এ 5x যোগ করুন। টার্ম 5x এবং -5x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
y=125-115
-4y এ 5y যোগ করুন।
y=10
-115 এ 125 যোগ করুন।
5x+4\times 10=115
5x+4y=115 এ y এর জন্য পরিবর্ত হিসাবে 10 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
5x+40=115
4 কে 10 বার গুণ করুন।
5x=75
সমীকরণের উভয় দিক থেকে 40 বাদ দিন।
x=15
5 দিয়ে উভয় দিককে ভাগ করুন।
x=15,y=10
সিস্টেম এখন সমাধান করা হয়েছে।