মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+6y=27,7x-3y=9
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+6y=27
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-6y+27
সমীকরণের উভয় দিক থেকে 6y বাদ দিন।
7\left(-6y+27\right)-3y=9
অন্য সমীকরণ 7x-3y=9 এ x এর জন্য -6y+27 বিপরীত করু ন।
-42y+189-3y=9
7 কে -6y+27 বার গুণ করুন।
-45y+189=9
-3y এ -42y যোগ করুন।
-45y=-180
সমীকরণের উভয় দিক থেকে 189 বাদ দিন।
y=4
-45 দিয়ে উভয় দিককে ভাগ করুন।
x=-6\times 4+27
x=-6y+27 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-24+27
-6 কে 4 বার গুণ করুন।
x=3
-24 এ 27 যোগ করুন।
x=3,y=4
সিস্টেম এখন সমাধান করা হয়েছে।
x+6y=27,7x-3y=9
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&6\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\9\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}1&6\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
\left(\begin{matrix}1&6\\7&-3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-6\times 7}&-\frac{6}{-3-6\times 7}\\-\frac{7}{-3-6\times 7}&\frac{1}{-3-6\times 7}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{2}{15}\\\frac{7}{45}&-\frac{1}{45}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 27+\frac{2}{15}\times 9\\\frac{7}{45}\times 27-\frac{1}{45}\times 9\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+6y=27,7x-3y=9
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
7x+7\times 6y=7\times 27,7x-3y=9
x এবং 7x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 7 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
7x+42y=189,7x-3y=9
সিমপ্লিফাই।
7x-7x+42y+3y=189-9
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 7x+42y=189 থেকে 7x-3y=9 বাদ দিন।
42y+3y=189-9
-7x এ 7x যোগ করুন। টার্ম 7x এবং -7x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
45y=189-9
3y এ 42y যোগ করুন।
45y=180
-9 এ 189 যোগ করুন।
y=4
45 দিয়ে উভয় দিককে ভাগ করুন।
7x-3\times 4=9
7x-3y=9 এ y এর জন্য পরিবর্ত হিসাবে 4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
7x-12=9
-3 কে 4 বার গুণ করুন।
7x=21
সমীকরণের উভয় দিকে 12 যোগ করুন।
x=3
7 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=4
সিস্টেম এখন সমাধান করা হয়েছে।