মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+20y=800
প্রথম সমীকরণটির সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
0=x+15y
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। 0 পেতে 0 এবং 0 গুণ করুন।
x+15y=0
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
x+20y=800,x+15y=0
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+20y=800
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-20y+800
সমীকরণের উভয় দিক থেকে 20y বাদ দিন।
-20y+800+15y=0
অন্য সমীকরণ x+15y=0 এ x এর জন্য -20y+800 বিপরীত করু ন।
-5y+800=0
15y এ -20y যোগ করুন।
-5y=-800
সমীকরণের উভয় দিক থেকে 800 বাদ দিন।
y=160
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=-20\times 160+800
x=-20y+800 এ y এর জন্য পরিবর্ত হিসাবে 160 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-3200+800
-20 কে 160 বার গুণ করুন।
x=-2400
-3200 এ 800 যোগ করুন।
x=-2400,y=160
সিস্টেম এখন সমাধান করা হয়েছে।
x+20y=800
প্রথম সমীকরণটির সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
0=x+15y
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। 0 পেতে 0 এবং 0 গুণ করুন।
x+15y=0
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
x+20y=800,x+15y=0
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\0\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
\left(\begin{matrix}1&20\\1&15\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800\\\frac{1}{5}\times 800\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2400\\160\end{matrix}\right)
পাটিগণিত করুন।
x=-2400,y=160
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+20y=800
প্রথম সমীকরণটির সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
0=x+15y
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। 0 পেতে 0 এবং 0 গুণ করুন।
x+15y=0
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
x+20y=800,x+15y=0
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
x-x+20y-15y=800
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে x+20y=800 থেকে x+15y=0 বাদ দিন।
20y-15y=800
-x এ x যোগ করুন। টার্ম x এবং -x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
5y=800
-15y এ 20y যোগ করুন।
y=160
5 দিয়ে উভয় দিককে ভাগ করুন।
x+15\times 160=0
x+15y=0 এ y এর জন্য পরিবর্ত হিসাবে 160 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x+2400=0
15 কে 160 বার গুণ করুন।
x=-2400
সমীকরণের উভয় দিক থেকে 2400 বাদ দিন।
x=-2400,y=160
সিস্টেম এখন সমাধান করা হয়েছে।