x, y এর জন্য সমাধান করুন
x = \frac{22}{7} = 3\frac{1}{7} \approx 3.142857143
y = \frac{272}{7} = 38\frac{6}{7} \approx 38.857142857
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
8x+y=64,x+y=42
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
8x+y=64
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
8x=-y+64
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{8}\left(-y+64\right)
8 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{8}y+8
\frac{1}{8} কে -y+64 বার গুণ করুন।
-\frac{1}{8}y+8+y=42
অন্য সমীকরণ x+y=42 এ x এর জন্য -\frac{y}{8}+8 বিপরীত করু ন।
\frac{7}{8}y+8=42
y এ -\frac{y}{8} যোগ করুন।
\frac{7}{8}y=34
সমীকরণের উভয় দিক থেকে 8 বাদ দিন।
y=\frac{272}{7}
\frac{7}{8} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{1}{8}\times \frac{272}{7}+8
x=-\frac{1}{8}y+8 এ y এর জন্য পরিবর্ত হিসাবে \frac{272}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{34}{7}+8
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{1}{8} কে \frac{272}{7} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{22}{7}
-\frac{34}{7} এ 8 যোগ করুন।
x=\frac{22}{7},y=\frac{272}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
8x+y=64,x+y=42
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}8&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\42\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}8&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}64\\42\end{matrix}\right)
\left(\begin{matrix}8&1\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}64\\42\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}64\\42\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-1}&-\frac{1}{8-1}\\-\frac{1}{8-1}&\frac{8}{8-1}\end{matrix}\right)\left(\begin{matrix}64\\42\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\-\frac{1}{7}&\frac{8}{7}\end{matrix}\right)\left(\begin{matrix}64\\42\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 64-\frac{1}{7}\times 42\\-\frac{1}{7}\times 64+\frac{8}{7}\times 42\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{7}\\\frac{272}{7}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{22}{7},y=\frac{272}{7}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
8x+y=64,x+y=42
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
8x-x+y-y=64-42
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 8x+y=64 থেকে x+y=42 বাদ দিন।
8x-x=64-42
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
7x=64-42
-x এ 8x যোগ করুন।
7x=22
-42 এ 64 যোগ করুন।
x=\frac{22}{7}
7 দিয়ে উভয় দিককে ভাগ করুন।
\frac{22}{7}+y=42
x+y=42 এ x এর জন্য পরিবর্ত হিসাবে \frac{22}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=\frac{272}{7}
সমীকরণের উভয় দিক থেকে \frac{22}{7} বাদ দিন।
x=\frac{22}{7},y=\frac{272}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}