মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

7x-y=-39
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
11x-y=9
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
7x-y=-39,11x-y=9
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
7x-y=-39
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
7x=y-39
সমীকরণের উভয় দিকে y যোগ করুন।
x=\frac{1}{7}\left(y-39\right)
7 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{7}y-\frac{39}{7}
\frac{1}{7} কে y-39 বার গুণ করুন।
11\left(\frac{1}{7}y-\frac{39}{7}\right)-y=9
অন্য সমীকরণ 11x-y=9 এ x এর জন্য \frac{-39+y}{7} বিপরীত করু ন।
\frac{11}{7}y-\frac{429}{7}-y=9
11 কে \frac{-39+y}{7} বার গুণ করুন।
\frac{4}{7}y-\frac{429}{7}=9
-y এ \frac{11y}{7} যোগ করুন।
\frac{4}{7}y=\frac{492}{7}
সমীকরণের উভয় দিকে \frac{429}{7} যোগ করুন।
y=123
\frac{4}{7} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{1}{7}\times 123-\frac{39}{7}
x=\frac{1}{7}y-\frac{39}{7} এ y এর জন্য পরিবর্ত হিসাবে 123 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{123-39}{7}
\frac{1}{7} কে 123 বার গুণ করুন।
x=12
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{123}{7} এ -\frac{39}{7} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=12,y=123
সিস্টেম এখন সমাধান করা হয়েছে।
7x-y=-39
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
11x-y=9
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
7x-y=-39,11x-y=9
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-39\\9\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-11\right)}&-\frac{-1}{7\left(-1\right)-\left(-11\right)}\\-\frac{11}{7\left(-1\right)-\left(-11\right)}&\frac{7}{7\left(-1\right)-\left(-11\right)}\end{matrix}\right)\left(\begin{matrix}-39\\9\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{11}{4}&\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}-39\\9\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-39\right)+\frac{1}{4}\times 9\\-\frac{11}{4}\left(-39\right)+\frac{7}{4}\times 9\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\123\end{matrix}\right)
পাটিগণিত করুন।
x=12,y=123
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
7x-y=-39
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
11x-y=9
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
7x-y=-39,11x-y=9
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
7x-11x-y+y=-39-9
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 7x-y=-39 থেকে 11x-y=9 বাদ দিন।
7x-11x=-39-9
y এ -y যোগ করুন। টার্ম -y এবং y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-4x=-39-9
-11x এ 7x যোগ করুন।
-4x=-48
-9 এ -39 যোগ করুন।
x=12
-4 দিয়ে উভয় দিককে ভাগ করুন।
11\times 12-y=9
11x-y=9 এ x এর জন্য পরিবর্ত হিসাবে 12 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
132-y=9
11 কে 12 বার গুণ করুন।
-y=-123
সমীকরণের উভয় দিক থেকে 132 বাদ দিন।
y=123
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=12,y=123
সিস্টেম এখন সমাধান করা হয়েছে।