x, y এর জন্য সমাধান করুন
x=3
y=2
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
5x-y=13,2x+3y=12
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x-y=13
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=y+13
সমীকরণের উভয় দিকে y যোগ করুন।
x=\frac{1}{5}\left(y+13\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{1}{5}y+\frac{13}{5}
\frac{1}{5} কে y+13 বার গুণ করুন।
2\left(\frac{1}{5}y+\frac{13}{5}\right)+3y=12
অন্য সমীকরণ 2x+3y=12 এ x এর জন্য \frac{13+y}{5} বিপরীত করু ন।
\frac{2}{5}y+\frac{26}{5}+3y=12
2 কে \frac{13+y}{5} বার গুণ করুন।
\frac{17}{5}y+\frac{26}{5}=12
3y এ \frac{2y}{5} যোগ করুন।
\frac{17}{5}y=\frac{34}{5}
সমীকরণের উভয় দিক থেকে \frac{26}{5} বাদ দিন।
y=2
\frac{17}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{1}{5}\times 2+\frac{13}{5}
x=\frac{1}{5}y+\frac{13}{5} এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{2+13}{5}
\frac{1}{5} কে 2 বার গুণ করুন।
x=3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{2}{5} এ \frac{13}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
5x-y=13,2x+3y=12
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\12\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
\left(\begin{matrix}5&-1\\2&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-2\right)}&-\frac{-1}{5\times 3-\left(-2\right)}\\-\frac{2}{5\times 3-\left(-2\right)}&\frac{5}{5\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{1}{17}\\-\frac{2}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 13+\frac{1}{17}\times 12\\-\frac{2}{17}\times 13+\frac{5}{17}\times 12\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x-y=13,2x+3y=12
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\times 5x+2\left(-1\right)y=2\times 13,5\times 2x+5\times 3y=5\times 12
5x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
10x-2y=26,10x+15y=60
সিমপ্লিফাই।
10x-10x-2y-15y=26-60
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x-2y=26 থেকে 10x+15y=60 বাদ দিন।
-2y-15y=26-60
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-17y=26-60
-15y এ -2y যোগ করুন।
-17y=-34
-60 এ 26 যোগ করুন।
y=2
-17 দিয়ে উভয় দিককে ভাগ করুন।
2x+3\times 2=12
2x+3y=12 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x+6=12
3 কে 2 বার গুণ করুন।
2x=6
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
x=3
2 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}