x, y এর জন্য সমাধান করুন
x = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
y = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
5x-7y=4,-x+2y=-3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x-7y=4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=7y+4
সমীকরণের উভয় দিকে 7y যোগ করুন।
x=\frac{1}{5}\left(7y+4\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{7}{5}y+\frac{4}{5}
\frac{1}{5} কে 7y+4 বার গুণ করুন।
-\left(\frac{7}{5}y+\frac{4}{5}\right)+2y=-3
অন্য সমীকরণ -x+2y=-3 এ x এর জন্য \frac{7y+4}{5} বিপরীত করু ন।
-\frac{7}{5}y-\frac{4}{5}+2y=-3
-1 কে \frac{7y+4}{5} বার গুণ করুন।
\frac{3}{5}y-\frac{4}{5}=-3
2y এ -\frac{7y}{5} যোগ করুন।
\frac{3}{5}y=-\frac{11}{5}
সমীকরণের উভয় দিকে \frac{4}{5} যোগ করুন।
y=-\frac{11}{3}
\frac{3}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{7}{5}\left(-\frac{11}{3}\right)+\frac{4}{5}
x=\frac{7}{5}y+\frac{4}{5} এ y এর জন্য পরিবর্ত হিসাবে -\frac{11}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{77}{15}+\frac{4}{5}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{7}{5} কে -\frac{11}{3} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{13}{3}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{77}{15} এ \frac{4}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{13}{3},y=-\frac{11}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
5x-7y=4,-x+2y=-3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-7\left(-1\right)\right)}&-\frac{-7}{5\times 2-\left(-7\left(-1\right)\right)}\\-\frac{-1}{5\times 2-\left(-7\left(-1\right)\right)}&\frac{5}{5\times 2-\left(-7\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{7}{3}\\\frac{1}{3}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 4+\frac{7}{3}\left(-3\right)\\\frac{1}{3}\times 4+\frac{5}{3}\left(-3\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{3}\\-\frac{11}{3}\end{matrix}\right)
পাটিগণিত করুন।
x=-\frac{13}{3},y=-\frac{11}{3}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x-7y=4,-x+2y=-3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-5x-\left(-7y\right)=-4,5\left(-1\right)x+5\times 2y=5\left(-3\right)
5x এবং -x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
-5x+7y=-4,-5x+10y=-15
সিমপ্লিফাই।
-5x+5x+7y-10y=-4+15
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -5x+7y=-4 থেকে -5x+10y=-15 বাদ দিন।
7y-10y=-4+15
5x এ -5x যোগ করুন। টার্ম -5x এবং 5x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-3y=-4+15
-10y এ 7y যোগ করুন।
-3y=11
15 এ -4 যোগ করুন।
y=-\frac{11}{3}
-3 দিয়ে উভয় দিককে ভাগ করুন।
-x+2\left(-\frac{11}{3}\right)=-3
-x+2y=-3 এ y এর জন্য পরিবর্ত হিসাবে -\frac{11}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-x-\frac{22}{3}=-3
2 কে -\frac{11}{3} বার গুণ করুন।
-x=\frac{13}{3}
সমীকরণের উভয় দিকে \frac{22}{3} যোগ করুন।
x=-\frac{13}{3}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{13}{3},y=-\frac{11}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}