মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

5x-7y=-9,-2x-y=-4
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x-7y=-9
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=7y-9
সমীকরণের উভয় দিকে 7y যোগ করুন।
x=\frac{1}{5}\left(7y-9\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{7}{5}y-\frac{9}{5}
\frac{1}{5} কে 7y-9 বার গুণ করুন।
-2\left(\frac{7}{5}y-\frac{9}{5}\right)-y=-4
অন্য সমীকরণ -2x-y=-4 এ x এর জন্য \frac{7y-9}{5} বিপরীত করু ন।
-\frac{14}{5}y+\frac{18}{5}-y=-4
-2 কে \frac{7y-9}{5} বার গুণ করুন।
-\frac{19}{5}y+\frac{18}{5}=-4
-y এ -\frac{14y}{5} যোগ করুন।
-\frac{19}{5}y=-\frac{38}{5}
সমীকরণের উভয় দিক থেকে \frac{18}{5} বাদ দিন।
y=2
-\frac{19}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{7}{5}\times 2-\frac{9}{5}
x=\frac{7}{5}y-\frac{9}{5} এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{14-9}{5}
\frac{7}{5} কে 2 বার গুণ করুন।
x=1
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{14}{5} এ -\frac{9}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
5x-7y=-9,-2x-y=-4
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-4\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&-\frac{-7}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\\-\frac{-2}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&\frac{5}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&-\frac{7}{19}\\-\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}\left(-9\right)-\frac{7}{19}\left(-4\right)\\-\frac{2}{19}\left(-9\right)-\frac{5}{19}\left(-4\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
পাটিগণিত করুন।
x=1,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x-7y=-9,-2x-y=-4
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-2\times 5x-2\left(-7\right)y=-2\left(-9\right),5\left(-2\right)x+5\left(-1\right)y=5\left(-4\right)
5x এবং -2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
-10x+14y=18,-10x-5y=-20
সিমপ্লিফাই।
-10x+10x+14y+5y=18+20
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -10x+14y=18 থেকে -10x-5y=-20 বাদ দিন।
14y+5y=18+20
10x এ -10x যোগ করুন। টার্ম -10x এবং 10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
19y=18+20
5y এ 14y যোগ করুন।
19y=38
20 এ 18 যোগ করুন।
y=2
19 দিয়ে উভয় দিককে ভাগ করুন।
-2x-2=-4
-2x-y=-4 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-2x=-2
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=1
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।