মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

5x-4y=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 4y বিয়োগ করুন।
5y+1-x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
5y-x=-1
উভয় দিক থেকে 1 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
5x-4y=-2,-x+5y=-1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
5x-4y=-2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
5x=4y-2
সমীকরণের উভয় দিকে 4y যোগ করুন।
x=\frac{1}{5}\left(4y-2\right)
5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{4}{5}y-\frac{2}{5}
\frac{1}{5} কে 4y-2 বার গুণ করুন।
-\left(\frac{4}{5}y-\frac{2}{5}\right)+5y=-1
অন্য সমীকরণ -x+5y=-1 এ x এর জন্য \frac{4y-2}{5} বিপরীত করু ন।
-\frac{4}{5}y+\frac{2}{5}+5y=-1
-1 কে \frac{4y-2}{5} বার গুণ করুন।
\frac{21}{5}y+\frac{2}{5}=-1
5y এ -\frac{4y}{5} যোগ করুন।
\frac{21}{5}y=-\frac{7}{5}
সমীকরণের উভয় দিক থেকে \frac{2}{5} বাদ দিন।
y=-\frac{1}{3}
\frac{21}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{4}{5}\left(-\frac{1}{3}\right)-\frac{2}{5}
x=\frac{4}{5}y-\frac{2}{5} এ y এর জন্য পরিবর্ত হিসাবে -\frac{1}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{4}{15}-\frac{2}{5}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{4}{5} কে -\frac{1}{3} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{2}{3}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{4}{15} এ -\frac{2}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{2}{3},y=-\frac{1}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
5x-4y=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 4y বিয়োগ করুন।
5y+1-x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
5y-x=-1
উভয় দিক থেকে 1 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
5x-4y=-2,-x+5y=-1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}&-\frac{-4}{5\times 5-\left(-4\left(-1\right)\right)}\\-\frac{-1}{5\times 5-\left(-4\left(-1\right)\right)}&\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{4}{21}\\\frac{1}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\left(-2\right)+\frac{4}{21}\left(-1\right)\\\frac{1}{21}\left(-2\right)+\frac{5}{21}\left(-1\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-\frac{1}{3}\end{matrix}\right)
পাটিগণিত করুন।
x=-\frac{2}{3},y=-\frac{1}{3}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
5x-4y=-2
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 4y বিয়োগ করুন।
5y+1-x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
5y-x=-1
উভয় দিক থেকে 1 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
5x-4y=-2,-x+5y=-1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-5x-\left(-4y\right)=-\left(-2\right),5\left(-1\right)x+5\times 5y=5\left(-1\right)
5x এবং -x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন।
-5x+4y=2,-5x+25y=-5
সিমপ্লিফাই।
-5x+5x+4y-25y=2+5
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -5x+4y=2 থেকে -5x+25y=-5 বাদ দিন।
4y-25y=2+5
5x এ -5x যোগ করুন। টার্ম -5x এবং 5x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-21y=2+5
-25y এ 4y যোগ করুন।
-21y=7
5 এ 2 যোগ করুন।
y=-\frac{1}{3}
-21 দিয়ে উভয় দিককে ভাগ করুন।
-x+5\left(-\frac{1}{3}\right)=-1
-x+5y=-1 এ y এর জন্য পরিবর্ত হিসাবে -\frac{1}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-x-\frac{5}{3}=-1
5 কে -\frac{1}{3} বার গুণ করুন।
-x=\frac{2}{3}
সমীকরণের উভয় দিকে \frac{5}{3} যোগ করুন।
x=-\frac{2}{3}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{2}{3},y=-\frac{1}{3}
সিস্টেম এখন সমাধান করা হয়েছে।