মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x+5y=2,3x+4y=1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
4x+5y=2
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
4x=-5y+2
সমীকরণের উভয় দিক থেকে 5y বাদ দিন।
x=\frac{1}{4}\left(-5y+2\right)
4 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{4}y+\frac{1}{2}
\frac{1}{4} কে -5y+2 বার গুণ করুন।
3\left(-\frac{5}{4}y+\frac{1}{2}\right)+4y=1
অন্য সমীকরণ 3x+4y=1 এ x এর জন্য -\frac{5y}{4}+\frac{1}{2} বিপরীত করু ন।
-\frac{15}{4}y+\frac{3}{2}+4y=1
3 কে -\frac{5y}{4}+\frac{1}{2} বার গুণ করুন।
\frac{1}{4}y+\frac{3}{2}=1
4y এ -\frac{15y}{4} যোগ করুন।
\frac{1}{4}y=-\frac{1}{2}
সমীকরণের উভয় দিক থেকে \frac{3}{2} বাদ দিন।
y=-2
4 দিয়ে উভয় দিককে গুণ করুন।
x=-\frac{5}{4}\left(-2\right)+\frac{1}{2}
x=-\frac{5}{4}y+\frac{1}{2} এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{5+1}{2}
-\frac{5}{4} কে -2 বার গুণ করুন।
x=3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{5}{2} এ \frac{1}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=3,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।
4x+5y=2,3x+4y=1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
\left(\begin{matrix}4&5\\3&4\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-5\times 3}&-\frac{5}{4\times 4-5\times 3}\\-\frac{3}{4\times 4-5\times 3}&\frac{4}{4\times 4-5\times 3}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-5\\-3&4\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-5\\-3\times 2+4\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=-2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
4x+5y=2,3x+4y=1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\times 4x+3\times 5y=3\times 2,4\times 3x+4\times 4y=4
4x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন।
12x+15y=6,12x+16y=4
সিমপ্লিফাই।
12x-12x+15y-16y=6-4
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 12x+15y=6 থেকে 12x+16y=4 বাদ দিন।
15y-16y=6-4
-12x এ 12x যোগ করুন। টার্ম 12x এবং -12x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-y=6-4
-16y এ 15y যোগ করুন।
-y=2
-4 এ 6 যোগ করুন।
y=-2
-1 দিয়ে উভয় দিককে ভাগ করুন।
3x+4\left(-2\right)=1
3x+4y=1 এ y এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x-8=1
4 কে -2 বার গুণ করুন।
3x=9
সমীকরণের উভয় দিকে 8 যোগ করুন।
x=3
3 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=-2
সিস্টেম এখন সমাধান করা হয়েছে।