মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x+5y=0,8x-15y=-5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
4x+5y=0
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
4x=-5y
সমীকরণের উভয় দিক থেকে 5y বাদ দিন।
x=\frac{1}{4}\left(-5\right)y
4 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{4}y
\frac{1}{4} কে -5y বার গুণ করুন।
8\left(-\frac{5}{4}\right)y-15y=-5
অন্য সমীকরণ 8x-15y=-5 এ x এর জন্য -\frac{5y}{4} বিপরীত করু ন।
-10y-15y=-5
8 কে -\frac{5y}{4} বার গুণ করুন।
-25y=-5
-15y এ -10y যোগ করুন।
y=\frac{1}{5}
-25 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{4}\times \frac{1}{5}
x=-\frac{5}{4}y এ y এর জন্য পরিবর্ত হিসাবে \frac{1}{5} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{1}{4}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{5}{4} কে \frac{1}{5} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=-\frac{1}{4},y=\frac{1}{5}
সিস্টেম এখন সমাধান করা হয়েছে।
4x+5y=0,8x-15y=-5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
\left(\begin{matrix}4&5\\8&-15\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4\left(-15\right)-5\times 8}&-\frac{5}{4\left(-15\right)-5\times 8}\\-\frac{8}{4\left(-15\right)-5\times 8}&\frac{4}{4\left(-15\right)-5\times 8}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&\frac{1}{20}\\\frac{2}{25}&-\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\left(-5\right)\\-\frac{1}{25}\left(-5\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\\\frac{1}{5}\end{matrix}\right)
পাটিগণিত করুন।
x=-\frac{1}{4},y=\frac{1}{5}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
4x+5y=0,8x-15y=-5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
8\times 4x+8\times 5y=0,4\times 8x+4\left(-15\right)y=4\left(-5\right)
4x এবং 8x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 8 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন।
32x+40y=0,32x-60y=-20
সিমপ্লিফাই।
32x-32x+40y+60y=20
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 32x+40y=0 থেকে 32x-60y=-20 বাদ দিন।
40y+60y=20
-32x এ 32x যোগ করুন। টার্ম 32x এবং -32x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
100y=20
60y এ 40y যোগ করুন।
y=\frac{1}{5}
100 দিয়ে উভয় দিককে ভাগ করুন।
8x-15\times \frac{1}{5}=-5
8x-15y=-5 এ y এর জন্য পরিবর্ত হিসাবে \frac{1}{5} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
8x-3=-5
-15 কে \frac{1}{5} বার গুণ করুন।
8x=-2
সমীকরণের উভয় দিকে 3 যোগ করুন।
x=-\frac{1}{4}
8 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{4},y=\frac{1}{5}
সিস্টেম এখন সমাধান করা হয়েছে।