মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x+3y=18,x+5y=2
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
4x+3y=18
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
4x=-3y+18
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=\frac{1}{4}\left(-3y+18\right)
4 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{3}{4}y+\frac{9}{2}
\frac{1}{4} কে -3y+18 বার গুণ করুন।
-\frac{3}{4}y+\frac{9}{2}+5y=2
অন্য সমীকরণ x+5y=2 এ x এর জন্য -\frac{3y}{4}+\frac{9}{2} বিপরীত করু ন।
\frac{17}{4}y+\frac{9}{2}=2
5y এ -\frac{3y}{4} যোগ করুন।
\frac{17}{4}y=-\frac{5}{2}
সমীকরণের উভয় দিক থেকে \frac{9}{2} বাদ দিন।
y=-\frac{10}{17}
\frac{17}{4} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{3}{4}\left(-\frac{10}{17}\right)+\frac{9}{2}
x=-\frac{3}{4}y+\frac{9}{2} এ y এর জন্য পরিবর্ত হিসাবে -\frac{10}{17} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{15}{34}+\frac{9}{2}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{3}{4} কে -\frac{10}{17} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{84}{17}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{15}{34} এ \frac{9}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{84}{17},y=-\frac{10}{17}
সিস্টেম এখন সমাধান করা হয়েছে।
4x+3y=18,x+5y=2
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}4&3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\2\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}4&3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
\left(\begin{matrix}4&3\\1&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3}&-\frac{3}{4\times 5-3}\\-\frac{1}{4\times 5-3}&\frac{4}{4\times 5-3}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&-\frac{3}{17}\\-\frac{1}{17}&\frac{4}{17}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\times 18-\frac{3}{17}\times 2\\-\frac{1}{17}\times 18+\frac{4}{17}\times 2\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{84}{17}\\-\frac{10}{17}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{84}{17},y=-\frac{10}{17}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
4x+3y=18,x+5y=2
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
4x+3y=18,4x+4\times 5y=4\times 2
4x এবং x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 4 দিয়ে গুণ করুন।
4x+3y=18,4x+20y=8
সিমপ্লিফাই।
4x-4x+3y-20y=18-8
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 4x+3y=18 থেকে 4x+20y=8 বাদ দিন।
3y-20y=18-8
-4x এ 4x যোগ করুন। টার্ম 4x এবং -4x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-17y=18-8
-20y এ 3y যোগ করুন।
-17y=10
-8 এ 18 যোগ করুন।
y=-\frac{10}{17}
-17 দিয়ে উভয় দিককে ভাগ করুন।
x+5\left(-\frac{10}{17}\right)=2
x+5y=2 এ y এর জন্য পরিবর্ত হিসাবে -\frac{10}{17} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x-\frac{50}{17}=2
5 কে -\frac{10}{17} বার গুণ করুন।
x=\frac{84}{17}
সমীকরণের উভয় দিকে \frac{50}{17} যোগ করুন।
x=\frac{84}{17},y=-\frac{10}{17}
সিস্টেম এখন সমাধান করা হয়েছে।