মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3x+y=-3,x+y=1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3x+y=-3
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
3x=-y-3
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{3}\left(-y-3\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{3}y-1
\frac{1}{3} কে -y-3 বার গুণ করুন।
-\frac{1}{3}y-1+y=1
অন্য সমীকরণ x+y=1 এ x এর জন্য -\frac{y}{3}-1 বিপরীত করু ন।
\frac{2}{3}y-1=1
y এ -\frac{y}{3} যোগ করুন।
\frac{2}{3}y=2
সমীকরণের উভয় দিকে 1 যোগ করুন।
y=3
\frac{2}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{1}{3}\times 3-1
x=-\frac{1}{3}y-1 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-1-1
-\frac{1}{3} কে 3 বার গুণ করুন।
x=-2
-1 এ -1 যোগ করুন।
x=-2,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
3x+y=-3,x+y=1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
\left(\begin{matrix}3&1\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{3}{3-1}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)-\frac{1}{2}\\-\frac{1}{2}\left(-3\right)+\frac{3}{2}\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
পাটিগণিত করুন।
x=-2,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
3x+y=-3,x+y=1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3x-x+y-y=-3-1
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3x+y=-3 থেকে x+y=1 বাদ দিন।
3x-x=-3-1
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
2x=-3-1
-x এ 3x যোগ করুন।
2x=-4
-1 এ -3 যোগ করুন।
x=-2
2 দিয়ে উভয় দিককে ভাগ করুন।
-2+y=1
x+y=1 এ x এর জন্য পরিবর্ত হিসাবে -2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=3
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=-2,y=3
সিস্টেম এখন সমাধান করা হয়েছে।