x, y এর জন্য সমাধান করুন
x = \frac{16}{7} = 2\frac{2}{7} \approx 2.285714286
y=\frac{3}{7}\approx 0.428571429
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
3x+5y=9,2x+8y=8
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3x+5y=9
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
3x=-5y+9
সমীকরণের উভয় দিক থেকে 5y বাদ দিন।
x=\frac{1}{3}\left(-5y+9\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{3}y+3
\frac{1}{3} কে -5y+9 বার গুণ করুন।
2\left(-\frac{5}{3}y+3\right)+8y=8
অন্য সমীকরণ 2x+8y=8 এ x এর জন্য -\frac{5y}{3}+3 বিপরীত করু ন।
-\frac{10}{3}y+6+8y=8
2 কে -\frac{5y}{3}+3 বার গুণ করুন।
\frac{14}{3}y+6=8
8y এ -\frac{10y}{3} যোগ করুন।
\frac{14}{3}y=2
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
y=\frac{3}{7}
\frac{14}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{5}{3}\times \frac{3}{7}+3
x=-\frac{5}{3}y+3 এ y এর জন্য পরিবর্ত হিসাবে \frac{3}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{5}{7}+3
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{5}{3} কে \frac{3}{7} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=\frac{16}{7}
-\frac{5}{7} এ 3 যোগ করুন।
x=\frac{16}{7},y=\frac{3}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
3x+5y=9,2x+8y=8
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&5\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\8\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&5\\2&8\end{matrix}\right))\left(\begin{matrix}3&5\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&8\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
\left(\begin{matrix}3&5\\2&8\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&8\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&8\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-5\times 2}&-\frac{5}{3\times 8-5\times 2}\\-\frac{2}{3\times 8-5\times 2}&\frac{3}{3\times 8-5\times 2}\end{matrix}\right)\left(\begin{matrix}9\\8\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&-\frac{5}{14}\\-\frac{1}{7}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}9\\8\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\times 9-\frac{5}{14}\times 8\\-\frac{1}{7}\times 9+\frac{3}{14}\times 8\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{7}\\\frac{3}{7}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{16}{7},y=\frac{3}{7}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
3x+5y=9,2x+8y=8
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\times 3x+2\times 5y=2\times 9,3\times 2x+3\times 8y=3\times 8
3x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন।
6x+10y=18,6x+24y=24
সিমপ্লিফাই।
6x-6x+10y-24y=18-24
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 6x+10y=18 থেকে 6x+24y=24 বাদ দিন।
10y-24y=18-24
-6x এ 6x যোগ করুন। টার্ম 6x এবং -6x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-14y=18-24
-24y এ 10y যোগ করুন।
-14y=-6
-24 এ 18 যোগ করুন।
y=\frac{3}{7}
-14 দিয়ে উভয় দিককে ভাগ করুন।
2x+8\times \frac{3}{7}=8
2x+8y=8 এ y এর জন্য পরিবর্ত হিসাবে \frac{3}{7} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
2x+\frac{24}{7}=8
8 কে \frac{3}{7} বার গুণ করুন।
2x=\frac{32}{7}
সমীকরণের উভয় দিক থেকে \frac{24}{7} বাদ দিন।
x=\frac{16}{7}
2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{16}{7},y=\frac{3}{7}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}