u, x এর জন্য সমাধান করুন
x=-\frac{1}{5}=-0.2
u=3
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
3u+5x=8,5u+5x=14
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3u+5x=8
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের u পৃথক করে u-এর জন্য সমাধান করুন।
3u=-5x+8
সমীকরণের উভয় দিক থেকে 5x বাদ দিন।
u=\frac{1}{3}\left(-5x+8\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
u=-\frac{5}{3}x+\frac{8}{3}
\frac{1}{3} কে -5x+8 বার গুণ করুন।
5\left(-\frac{5}{3}x+\frac{8}{3}\right)+5x=14
অন্য সমীকরণ 5u+5x=14 এ u এর জন্য \frac{-5x+8}{3} বিপরীত করু ন।
-\frac{25}{3}x+\frac{40}{3}+5x=14
5 কে \frac{-5x+8}{3} বার গুণ করুন।
-\frac{10}{3}x+\frac{40}{3}=14
5x এ -\frac{25x}{3} যোগ করুন।
-\frac{10}{3}x=\frac{2}{3}
সমীকরণের উভয় দিক থেকে \frac{40}{3} বাদ দিন।
x=-\frac{1}{5}
-\frac{10}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
u=-\frac{5}{3}\left(-\frac{1}{5}\right)+\frac{8}{3}
u=-\frac{5}{3}x+\frac{8}{3} এ x এর জন্য পরিবর্ত হিসাবে -\frac{1}{5} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি u এর জন্য সরাসরি সমাধান করতে পারেন।
u=\frac{1+8}{3}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে -\frac{5}{3} কে -\frac{1}{5} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
u=3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{1}{3} এ \frac{8}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
u=3,x=-\frac{1}{5}
সিস্টেম এখন সমাধান করা হয়েছে।
3u+5x=8,5u+5x=14
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&5\\5&5\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}3&5\\5&5\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
\left(\begin{matrix}3&5\\5&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-5\times 5}&-\frac{5}{3\times 5-5\times 5}\\-\frac{5}{3\times 5-5\times 5}&\frac{3}{3\times 5-5\times 5}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 8+\frac{1}{2}\times 14\\\frac{1}{2}\times 8-\frac{3}{10}\times 14\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{1}{5}\end{matrix}\right)
পাটিগণিত করুন।
u=3,x=-\frac{1}{5}
ম্যাট্রিক্স এলিমেন্ট u এবং x বের করুন।
3u+5x=8,5u+5x=14
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3u-5u+5x-5x=8-14
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3u+5x=8 থেকে 5u+5x=14 বাদ দিন।
3u-5u=8-14
-5x এ 5x যোগ করুন। টার্ম 5x এবং -5x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-2u=8-14
-5u এ 3u যোগ করুন।
-2u=-6
-14 এ 8 যোগ করুন।
u=3
-2 দিয়ে উভয় দিককে ভাগ করুন।
5\times 3+5x=14
5u+5x=14 এ u এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
15+5x=14
5 কে 3 বার গুণ করুন।
5x=-1
সমীকরণের উভয় দিক থেকে 15 বাদ দিন।
x=-\frac{1}{5}
5 দিয়ে উভয় দিককে ভাগ করুন।
u=3,x=-\frac{1}{5}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}