মূল বিষয়বস্তুতে এড়িয়ে যান
a, b এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3a+b=9,a+b=3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3a+b=9
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের a পৃথক করে a-এর জন্য সমাধান করুন।
3a=-b+9
সমীকরণের উভয় দিক থেকে b বাদ দিন।
a=\frac{1}{3}\left(-b+9\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
a=-\frac{1}{3}b+3
\frac{1}{3} কে -b+9 বার গুণ করুন।
-\frac{1}{3}b+3+b=3
অন্য সমীকরণ a+b=3 এ a এর জন্য -\frac{b}{3}+3 বিপরীত করু ন।
\frac{2}{3}b+3=3
b এ -\frac{b}{3} যোগ করুন।
\frac{2}{3}b=0
সমীকরণের উভয় দিক থেকে 3 বাদ দিন।
b=0
\frac{2}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
a=3
a=-\frac{1}{3}b+3 এ b এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি a এর জন্য সরাসরি সমাধান করতে পারেন।
a=3,b=0
সিস্টেম এখন সমাধান করা হয়েছে।
3a+b=9,a+b=3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}9\\3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}9\\3\end{matrix}\right)
\left(\begin{matrix}3&1\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}9\\3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}9\\3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{3}{3-1}\end{matrix}\right)\left(\begin{matrix}9\\3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}9\\3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 9-\frac{1}{2}\times 3\\-\frac{1}{2}\times 9+\frac{3}{2}\times 3\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
পাটিগণিত করুন।
a=3,b=0
ম্যাট্রিক্স এলিমেন্ট a এবং b বের করুন।
3a+b=9,a+b=3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3a-a+b-b=9-3
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 3a+b=9 থেকে a+b=3 বাদ দিন।
3a-a=9-3
-b এ b যোগ করুন। টার্ম b এবং -b বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
2a=9-3
-a এ 3a যোগ করুন।
2a=6
-3 এ 9 যোগ করুন।
a=3
2 দিয়ে উভয় দিককে ভাগ করুন।
3+b=3
a+b=3 এ a এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি b এর জন্য সরাসরি সমাধান করতে পারেন।
b=0
সমীকরণের উভয় দিক থেকে 3 বাদ দিন।
a=3,b=0
সিস্টেম এখন সমাধান করা হয়েছে।