y, x এর জন্য সমাধান করুন
x=7
y=-3
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2y-3x=-27,5y+3x=6
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2y-3x=-27
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
2y=3x-27
সমীকরণের উভয় দিকে 3x যোগ করুন।
y=\frac{1}{2}\left(3x-27\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
y=\frac{3}{2}x-\frac{27}{2}
\frac{1}{2} কে -27+3x বার গুণ করুন।
5\left(\frac{3}{2}x-\frac{27}{2}\right)+3x=6
অন্য সমীকরণ 5y+3x=6 এ y এর জন্য \frac{-27+3x}{2} বিপরীত করু ন।
\frac{15}{2}x-\frac{135}{2}+3x=6
5 কে \frac{-27+3x}{2} বার গুণ করুন।
\frac{21}{2}x-\frac{135}{2}=6
3x এ \frac{15x}{2} যোগ করুন।
\frac{21}{2}x=\frac{147}{2}
সমীকরণের উভয় দিকে \frac{135}{2} যোগ করুন।
x=7
\frac{21}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
y=\frac{3}{2}\times 7-\frac{27}{2}
y=\frac{3}{2}x-\frac{27}{2} এ x এর জন্য পরিবর্ত হিসাবে 7 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=\frac{21-27}{2}
\frac{3}{2} কে 7 বার গুণ করুন।
y=-3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{21}{2} এ -\frac{27}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
y=-3,x=7
সিস্টেম এখন সমাধান করা হয়েছে।
2y-3x=-27,5y+3x=6
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-27\\6\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}2&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
\left(\begin{matrix}2&-3\\5&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\times 5\right)}&-\frac{-3}{2\times 3-\left(-3\times 5\right)}\\-\frac{5}{2\times 3-\left(-3\times 5\right)}&\frac{2}{2\times 3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-27\\6\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{5}{21}&\frac{2}{21}\end{matrix}\right)\left(\begin{matrix}-27\\6\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-27\right)+\frac{1}{7}\times 6\\-\frac{5}{21}\left(-27\right)+\frac{2}{21}\times 6\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
পাটিগণিত করুন।
y=-3,x=7
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
2y-3x=-27,5y+3x=6
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5\times 2y+5\left(-3\right)x=5\left(-27\right),2\times 5y+2\times 3x=2\times 6
2y এবং 5y সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
10y-15x=-135,10y+6x=12
সিমপ্লিফাই।
10y-10y-15x-6x=-135-12
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10y-15x=-135 থেকে 10y+6x=12 বাদ দিন।
-15x-6x=-135-12
-10y এ 10y যোগ করুন। টার্ম 10y এবং -10y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-21x=-135-12
-6x এ -15x যোগ করুন।
-21x=-147
-12 এ -135 যোগ করুন।
x=7
-21 দিয়ে উভয় দিককে ভাগ করুন।
5y+3\times 7=6
5y+3x=6 এ x এর জন্য পরিবর্ত হিসাবে 7 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
5y+21=6
3 কে 7 বার গুণ করুন।
5y=-15
সমীকরণের উভয় দিক থেকে 21 বাদ দিন।
y=-3
5 দিয়ে উভয় দিককে ভাগ করুন।
y=-3,x=7
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}