মূল বিষয়বস্তুতে এড়িয়ে যান
y, x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2y-2x=-40,2y+3x=10
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2y-2x=-40
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
2y=2x-40
সমীকরণের উভয় দিকে 2x যোগ করুন।
y=\frac{1}{2}\left(2x-40\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
y=x-20
\frac{1}{2} কে -40+2x বার গুণ করুন।
2\left(x-20\right)+3x=10
অন্য সমীকরণ 2y+3x=10 এ y এর জন্য x-20 বিপরীত করু ন।
2x-40+3x=10
2 কে x-20 বার গুণ করুন।
5x-40=10
3x এ 2x যোগ করুন।
5x=50
সমীকরণের উভয় দিকে 40 যোগ করুন।
x=10
5 দিয়ে উভয় দিককে ভাগ করুন।
y=10-20
y=x-20 এ x এর জন্য পরিবর্ত হিসাবে 10 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=-10
10 এ -20 যোগ করুন।
y=-10,x=10
সিস্টেম এখন সমাধান করা হয়েছে।
2y-2x=-40,2y+3x=10
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-40\\10\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
\left(\begin{matrix}2&-2\\2&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-2\times 2\right)}&-\frac{-2}{2\times 3-\left(-2\times 2\right)}\\-\frac{2}{2\times 3-\left(-2\times 2\right)}&\frac{2}{2\times 3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\left(-40\right)+\frac{1}{5}\times 10\\-\frac{1}{5}\left(-40\right)+\frac{1}{5}\times 10\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
পাটিগণিত করুন।
y=-10,x=10
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
2y-2x=-40,2y+3x=10
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2y-2y-2x-3x=-40-10
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2y-2x=-40 থেকে 2y+3x=10 বাদ দিন।
-2x-3x=-40-10
-2y এ 2y যোগ করুন। টার্ম 2y এবং -2y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-5x=-40-10
-3x এ -2x যোগ করুন।
-5x=-50
-10 এ -40 যোগ করুন।
x=10
-5 দিয়ে উভয় দিককে ভাগ করুন।
2y+3\times 10=10
2y+3x=10 এ x এর জন্য পরিবর্ত হিসাবে 10 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
2y+30=10
3 কে 10 বার গুণ করুন।
2y=-20
সমীকরণের উভয় দিক থেকে 30 বাদ দিন।
y=-10
2 দিয়ে উভয় দিককে ভাগ করুন।
y=-10,x=10
সিস্টেম এখন সমাধান করা হয়েছে।