মূল বিষয়বস্তুতে এড়িয়ে যান
y, x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2y-3x=-4
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
2y-x=1
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2y-3x=-4,2y-x=1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2y-3x=-4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের y পৃথক করে y-এর জন্য সমাধান করুন।
2y=3x-4
সমীকরণের উভয় দিকে 3x যোগ করুন।
y=\frac{1}{2}\left(3x-4\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
y=\frac{3}{2}x-2
\frac{1}{2} কে 3x-4 বার গুণ করুন।
2\left(\frac{3}{2}x-2\right)-x=1
অন্য সমীকরণ 2y-x=1 এ y এর জন্য \frac{3x}{2}-2 বিপরীত করু ন।
3x-4-x=1
2 কে \frac{3x}{2}-2 বার গুণ করুন।
2x-4=1
-x এ 3x যোগ করুন।
2x=5
সমীকরণের উভয় দিকে 4 যোগ করুন।
x=\frac{5}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
y=\frac{3}{2}\times \frac{5}{2}-2
y=\frac{3}{2}x-2 এ x এর জন্য পরিবর্ত হিসাবে \frac{5}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
y=\frac{15}{4}-2
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{3}{2} কে \frac{5}{2} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
y=\frac{7}{4}
\frac{15}{4} এ -2 যোগ করুন।
y=\frac{7}{4},x=\frac{5}{2}
সিস্টেম এখন সমাধান করা হয়েছে।
2y-3x=-4
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
2y-x=1
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2y-3x=-4,2y-x=1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 2\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 2\right)}\\-\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{3}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-4\right)+\frac{3}{4}\\-\frac{1}{2}\left(-4\right)+\frac{1}{2}\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4}\\\frac{5}{2}\end{matrix}\right)
পাটিগণিত করুন।
y=\frac{7}{4},x=\frac{5}{2}
ম্যাট্রিক্স এলিমেন্ট y এবং x বের করুন।
2y-3x=-4
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে 3x বিয়োগ করুন।
2y-x=1
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2y-3x=-4,2y-x=1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2y-2y-3x+x=-4-1
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2y-3x=-4 থেকে 2y-x=1 বাদ দিন।
-3x+x=-4-1
-2y এ 2y যোগ করুন। টার্ম 2y এবং -2y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-2x=-4-1
x এ -3x যোগ করুন।
-2x=-5
-1 এ -4 যোগ করুন।
x=\frac{5}{2}
-2 দিয়ে উভয় দিককে ভাগ করুন।
2y-\frac{5}{2}=1
2y-x=1 এ x এর জন্য পরিবর্ত হিসাবে \frac{5}{2} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
2y=\frac{7}{2}
সমীকরণের উভয় দিকে \frac{5}{2} যোগ করুন।
y=\frac{7}{4}
2 দিয়ে উভয় দিককে ভাগ করুন।
y=\frac{7}{4},x=\frac{5}{2}
সিস্টেম এখন সমাধান করা হয়েছে।