মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x-y=0,5x-2y=1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x-y=0
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=y
সমীকরণের উভয় দিকে y যোগ করুন।
x=\frac{1}{2}y
2 দিয়ে উভয় দিককে ভাগ করুন।
5\times \frac{1}{2}y-2y=1
অন্য সমীকরণ 5x-2y=1 এ x এর জন্য \frac{y}{2} বিপরীত করু ন।
\frac{5}{2}y-2y=1
5 কে \frac{y}{2} বার গুণ করুন।
\frac{1}{2}y=1
-2y এ \frac{5y}{2} যোগ করুন।
y=2
2 দিয়ে উভয় দিককে গুণ করুন।
x=\frac{1}{2}\times 2
x=\frac{1}{2}y এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=1
\frac{1}{2} কে 2 বার গুণ করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
2x-y=0,5x-2y=1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-5\right)}&-\frac{-1}{2\left(-2\right)-\left(-5\right)}\\-\frac{5}{2\left(-2\right)-\left(-5\right)}&\frac{2}{2\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\-5&2\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
মেট্রিক্স গুণ করুন।
x=1,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x-y=0,5x-2y=1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5\times 2x+5\left(-1\right)y=0,2\times 5x+2\left(-2\right)y=2
2x এবং 5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
10x-5y=0,10x-4y=2
সিমপ্লিফাই।
10x-10x-5y+4y=-2
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x-5y=0 থেকে 10x-4y=2 বাদ দিন।
-5y+4y=-2
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-y=-2
4y এ -5y যোগ করুন।
y=2
-1 দিয়ে উভয় দিককে ভাগ করুন।
5x-2\times 2=1
5x-2y=1 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
5x-4=1
-2 কে 2 বার গুণ করুন।
5x=5
সমীকরণের উভয় দিকে 4 যোগ করুন।
x=1
5 দিয়ে উভয় দিককে ভাগ করুন।
x=1,y=2
সিস্টেম এখন সমাধান করা হয়েছে।