মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x-3y=-1,5x+2y=26
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x-3y=-1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=3y-1
সমীকরণের উভয় দিকে 3y যোগ করুন।
x=\frac{1}{2}\left(3y-1\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{3}{2}y-\frac{1}{2}
\frac{1}{2} কে 3y-1 বার গুণ করুন।
5\left(\frac{3}{2}y-\frac{1}{2}\right)+2y=26
অন্য সমীকরণ 5x+2y=26 এ x এর জন্য \frac{3y-1}{2} বিপরীত করু ন।
\frac{15}{2}y-\frac{5}{2}+2y=26
5 কে \frac{3y-1}{2} বার গুণ করুন।
\frac{19}{2}y-\frac{5}{2}=26
2y এ \frac{15y}{2} যোগ করুন।
\frac{19}{2}y=\frac{57}{2}
সমীকরণের উভয় দিকে \frac{5}{2} যোগ করুন।
y=3
\frac{19}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{3}{2}\times 3-\frac{1}{2}
x=\frac{3}{2}y-\frac{1}{2} এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{9-1}{2}
\frac{3}{2} কে 3 বার গুণ করুন।
x=4
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{9}{2} এ -\frac{1}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=4,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
2x-3y=-1,5x+2y=26
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\26\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}2&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
\left(\begin{matrix}2&-3\\5&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 5\right)}&-\frac{-3}{2\times 2-\left(-3\times 5\right)}\\-\frac{5}{2\times 2-\left(-3\times 5\right)}&\frac{2}{2\times 2-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-1\\26\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{3}{19}\\-\frac{5}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}-1\\26\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\left(-1\right)+\frac{3}{19}\times 26\\-\frac{5}{19}\left(-1\right)+\frac{2}{19}\times 26\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
পাটিগণিত করুন।
x=4,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x-3y=-1,5x+2y=26
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
5\times 2x+5\left(-3\right)y=5\left(-1\right),2\times 5x+2\times 2y=2\times 26
2x এবং 5x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 5 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
10x-15y=-5,10x+4y=52
সিমপ্লিফাই।
10x-10x-15y-4y=-5-52
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x-15y=-5 থেকে 10x+4y=52 বাদ দিন।
-15y-4y=-5-52
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-19y=-5-52
-4y এ -15y যোগ করুন।
-19y=-57
-52 এ -5 যোগ করুন।
y=3
-19 দিয়ে উভয় দিককে ভাগ করুন।
5x+2\times 3=26
5x+2y=26 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
5x+6=26
2 কে 3 বার গুণ করুন।
5x=20
সমীকরণের উভয় দিক থেকে 6 বাদ দিন।
x=4
5 দিয়ে উভয় দিককে ভাগ করুন।
x=4,y=3
সিস্টেম এখন সমাধান করা হয়েছে।