মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

y-7x=3
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 7x বিয়োগ করুন।
2x+y=-6,-7x+y=3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+y=-6
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-y-6
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{2}\left(-y-6\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{2}y-3
\frac{1}{2} কে -y-6 বার গুণ করুন।
-7\left(-\frac{1}{2}y-3\right)+y=3
অন্য সমীকরণ -7x+y=3 এ x এর জন্য -\frac{y}{2}-3 বিপরীত করু ন।
\frac{7}{2}y+21+y=3
-7 কে -\frac{y}{2}-3 বার গুণ করুন।
\frac{9}{2}y+21=3
y এ \frac{7y}{2} যোগ করুন।
\frac{9}{2}y=-18
সমীকরণের উভয় দিক থেকে 21 বাদ দিন।
y=-4
\frac{9}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{1}{2}\left(-4\right)-3
x=-\frac{1}{2}y-3 এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=2-3
-\frac{1}{2} কে -4 বার গুণ করুন।
x=-1
2 এ -3 যোগ করুন।
x=-1,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।
y-7x=3
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 7x বিয়োগ করুন।
2x+y=-6,-7x+y=3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&1\\-7&1\end{matrix}\right))\left(\begin{matrix}2&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-6\\3\end{matrix}\right)
\left(\begin{matrix}2&1\\-7&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-6\\3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-6\\3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-7\right)}&-\frac{1}{2-\left(-7\right)}\\-\frac{-7}{2-\left(-7\right)}&\frac{2}{2-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-6\\3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&-\frac{1}{9}\\\frac{7}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}-6\\3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\left(-6\right)-\frac{1}{9}\times 3\\\frac{7}{9}\left(-6\right)+\frac{2}{9}\times 3\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
পাটিগণিত করুন।
x=-1,y=-4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
y-7x=3
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে 7x বিয়োগ করুন।
2x+y=-6,-7x+y=3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2x+7x+y-y=-6-3
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2x+y=-6 থেকে -7x+y=3 বাদ দিন।
2x+7x=-6-3
-y এ y যোগ করুন। টার্ম y এবং -y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
9x=-6-3
7x এ 2x যোগ করুন।
9x=-9
-3 এ -6 যোগ করুন।
x=-1
9 দিয়ে উভয় দিককে ভাগ করুন।
-7\left(-1\right)+y=3
-7x+y=3 এ x এর জন্য পরিবর্ত হিসাবে -1 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
7+y=3
-7 কে -1 বার গুণ করুন।
y=-4
সমীকরণের উভয় দিক থেকে 7 বাদ দিন।
x=-1,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।