x, y এর জন্য সমাধান করুন
x=5
y=2
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2x+5y=20,3x-2y=11
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2x+5y=20
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
2x=-5y+20
সমীকরণের উভয় দিক থেকে 5y বাদ দিন।
x=\frac{1}{2}\left(-5y+20\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{5}{2}y+10
\frac{1}{2} কে -5y+20 বার গুণ করুন।
3\left(-\frac{5}{2}y+10\right)-2y=11
অন্য সমীকরণ 3x-2y=11 এ x এর জন্য -\frac{5y}{2}+10 বিপরীত করু ন।
-\frac{15}{2}y+30-2y=11
3 কে -\frac{5y}{2}+10 বার গুণ করুন।
-\frac{19}{2}y+30=11
-2y এ -\frac{15y}{2} যোগ করুন।
-\frac{19}{2}y=-19
সমীকরণের উভয় দিক থেকে 30 বাদ দিন।
y=2
-\frac{19}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{5}{2}\times 2+10
x=-\frac{5}{2}y+10 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-5+10
-\frac{5}{2} কে 2 বার গুণ করুন।
x=5
-5 এ 10 যোগ করুন।
x=5,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
2x+5y=20,3x-2y=11
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\11\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}20\\11\end{matrix}\right)
\left(\begin{matrix}2&5\\3&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}20\\11\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}20\\11\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-5\times 3}&-\frac{5}{2\left(-2\right)-5\times 3}\\-\frac{3}{2\left(-2\right)-5\times 3}&\frac{2}{2\left(-2\right)-5\times 3}\end{matrix}\right)\left(\begin{matrix}20\\11\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{5}{19}\\\frac{3}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}20\\11\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 20+\frac{5}{19}\times 11\\\frac{3}{19}\times 20-\frac{2}{19}\times 11\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
পাটিগণিত করুন।
x=5,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
2x+5y=20,3x-2y=11
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\times 2x+3\times 5y=3\times 20,2\times 3x+2\left(-2\right)y=2\times 11
2x এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
6x+15y=60,6x-4y=22
সিমপ্লিফাই।
6x-6x+15y+4y=60-22
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 6x+15y=60 থেকে 6x-4y=22 বাদ দিন।
15y+4y=60-22
-6x এ 6x যোগ করুন। টার্ম 6x এবং -6x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
19y=60-22
4y এ 15y যোগ করুন।
19y=38
-22 এ 60 যোগ করুন।
y=2
19 দিয়ে উভয় দিককে ভাগ করুন।
3x-2\times 2=11
3x-2y=11 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x-4=11
-2 কে 2 বার গুণ করুন।
3x=15
সমীকরণের উভয় দিকে 4 যোগ করুন।
x=5
3 দিয়ে উভয় দিককে ভাগ করুন।
x=5,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}